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O R I G I N A L  A R T I C L E

3D Vision Aided GNSS Real-Time Kinematic Positioning for 
Autonomous Systems in Urban Canyons

Weisong Wen  Xiwei Bai  Li-Ta Hsu 

1  INTRODUCTION

Accurate and globally-referenced positioning is one of the crucial components 
of autonomous navigation systems, including autonomous driving (Geiger et al., 
2013), unmanned aerial vehicles (Cho et al., 2011; Zhang et al., 2011), and unmanned 
ground vehicles (T. Liu et al., 2021). During the past several decades, there has been 
an extensive exploration of these approaches using onboard local sensors, such as 
cameras, inertial measurement units (IMUs), or light detection and ranging (lidar). 
Lidar-based simultaneous localization and mapping (SLAM) (Cadena et al., 2016) 
has attracted much attention due to its superior robustness and accuracy, for exam-
ple, the lidar odometry and mapping (LOAM) pipeline (Zhang & Singh, 2017) as 
well as variants of LOAM (Shan & Englot, 2018; Wang et al., 2021), and its integra-
tion with IMU (Li, et al., 2021; Qin et al., 2020; Shan et al., 2020; Ye et al., 2019) to 
enhance its robustness in challenging environments. However, the high cost of the 
three-dimensional (3D) lidar sensor is one of the major problems preventing its full 
deployment in autonomous systems. Moreover, lidar odometry-based positioning 
is subjected to inevitable drift in long-term operations, even with the assistance 
of IMU. In contrast to lidar-based positioning solutions, the visual/inertial system 
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Abstract
In this paper, a three-dimensional vision-aided method is proposed to improve 
global navigation satellite system (GNSS) real-time kinematic (RTK) position-
ing. To mitigate the impact of reflected non-line-of-sight (NLOS) reception, a 
sky-pointing camera with a deep neural network was employed to exclude these 
measurements. However, NLOS exclusion results in distorted satellite geometry. 
To fill this gap, complementarity between the low-lying visual landmarks and the 
healthy but high-elevation satellite measurements was explored to improve the 
geometric constraints. Specifically, inertial measurement units, visual landmarks 
captured by a forward-looking camera, and healthy GNSS measurements were 
tightly integrated via sliding window optimization to estimate the GNSS-RTK 
float solution. The integer ambiguities and the fixed GNSS-RTK solution were 
then resolved. The effectiveness of the proposed method was verified using several 
challenging data sets collected in urban canyons in Hong Kong.
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(VINS) is a complementary and cost-effective method for robotics navigation appli-
cations. The VINS exhibits several advantages, including size, power assumption, 
weight, and availability. Many state-of-the-art VINS pipelines have been developed 
in the past several decades, including filtering-based methods such as Multi-state 
Constraint Kalman Filter (MSCKF), robust visual inertial odometry (ROVIO) 
(Bloesch et al., 2015), and Openvins (Geneva et al., 2020). Other research direc-
tions include optimization-based VINS pipelines such as the Open Keyframe-based 
Visual-Inertial SLAM (OKVIS) (Leutenegger et al., 2015), VINS-Mono (Qin et al., 
2018), and ORB-SLAM3 (Campos et al., 2021). However, the VINS shares a similar 
drawback with lidar, namely, that the estimation state is subject to drift over time. 
Moreover, results from previous studies (Bai et al., 2020a; Bai et al., 2020c) revealed 
that the urban canyon scenarios introduce additional challenges to the VINS due 
to excessive movement of objects in the surroundings, unstable illumination, and 
even stronger motion blur, all of which would enhance drift. To mitigate this prob-
lem, some studies (Gong et al., 2020; X. Li et al., 2021) proposed a method to inte-
grate the globally-referenced global navigation satellite system (GNSS) single point 
positioning (SPP) with VINS in a loosely (Gong et al., 2020; Li et al., 2021; Qin 
et al., 2019) or even a tightly coupled manner (Cao et al., 2022). In each of these 
cases, the absolute positioning accuracy will depend highly on the GNSS solution. 
Unfortunately, the accuracy of GNSS readings based on data from a single receiver 
is limited to several meters because of atmospheric and receiver clock errors (Enge, 
1994). According to one evaluation of the urbanLoco data set (Wen et al., 2020), 
and an overall absolute mean error of 4.5 meters is obtained with tightly coupled 
integration of visual/inertial/GNSS in urban scenarios. This cannot satisfy the nav-
igation requirements of a typical autonomous system.

1.1  Problems Using GNSS-Real-Time Kinematic 
Positioning (RTK) in Urban Canyons

Fortunately, GNSS real-time kinematic (GNSS-RTK) positioning (Counselman 
& Gourevitch, 1981) introduces a significantly higher degree of absolute posi-
tioning accuracy with the assistance of carrier-phase measurements and correc-
tions from the reference station. Centimeter-level accuracy can be achieved in 
open areas using GNSS-RTK positioning. Therefore, the combination of the VINS 
and GNSS-RTK may be a promising solution to achieve globally-referenced and 
locally-accurate positioning. GNSS-RTK positioning typically involves two steps: 
(1) the float solution is estimated based on the double-differenced (DD) GNSS 
carrier-phase and pseudorange measurements (Enge, 1994); (2) the integer ambi-
guity is subsequently resolved via integer least-squares algorithms (e.g., LAMBDA)
(Teunissen, 2000) based on the derived float solution. Centimeter-level position-
ing accuracy can be achieved in an open area when the fixed solution is achieved. 
Unfortunately, the accuracy of GNSS-RTK positioning is significantly degraded 
in urban canyons due to the non-line-of-sight (NLOS) reception caused by GNSS 
signal reflection, blockage from surrounding buildings, and even dynamic objects 
(Wen, et al. 2019a), for example, double-decker buses. Theoretically, the signifi-
cantly degraded GNSS-RTK positioning accuracy observed in urban canyons is 
induced by two major problems.

(1)	 Problem 1: According to our previous findings (Wen et al., 2019b), most of 
the GNSS signals received in highly urbanized areas are NLOS receptions. 
These typically emerge under conditions in which direct light-of-sight (LOS) 
signal transmission is blocked and reflected signals from the same satellite 
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are received. In this case, the accuracy of the float solution estimation based 
on DD carrier-phase and pseudorange measurements is severely degraded. 

(2)	 Problem 2: The number of available satellites may be limited in urban 
canyons due to signal blockage caused by surrounding buildings. In these 
situations, the geometry of the satellite distribution is distorted, which would 
cause a large ambiguity dilution of precision (ADOP) (Teunissen, 1997). The 
ADOP can be calculated based on the covariance of the integer ambiguity. 
Mathematically, a smaller ADOP could lead to an increased rate of ambiguity 
resolution. A similar phenomenon describing poor LOS satellite geometry was 
described by Marais et al. (2014; 2015). As a result, it may be difficult to obtain 
a fixed solution due to the poor satellite geometry with larger ambiguity in the 
searching space. 

In summary, the poor quality of the GNSS measurements and the satellite geom-
etry distributions are the major problems limiting the performance of GNSS-RTK 
positioning systems.

1.2  Related Work on NLOS Mitigation for GNSSs

Numerous scientific endeavors have attempted to eliminate these two bottle-
necks. One method was proposed by Li et al. (2017) to integrate a high-cost IMU 
with GNSS-RTK positioning to enhance the robustness against the impact of outlier 
measurements (e.g., NLOS reception). Similarly, potential GNSS NLOS measure-
ments were also partially excluded based on a GNSS measurement residual-based 
consistency check (Hsu et al., 2017). However, these enhancements are limited by 
the cost of the employed IMU sensor and the percentage contributions of the GNSS 
outlier measurements. Similar work by T. Li et al. (2019) went one step further 
by integrating the GNSS-RTK/visual/inertial based on an Extended Kalman Filter 
(EKF) estimator together with a similar outlier rejection scheme based on the 
residual. Sub-meter positioning accuracy was achieved using the evaluated data 
sets. However, the GNSS NLOS exclusion (Li et al., 2019; Li et al., 2017) can only 
partially exclude these signals and can even aggravate the problem of degraded sat-
ellite geometry distribution. Considering that the GNSS measurements are highly 
environmentally-dependent and time-correlated, we recently proposed exchang-
ing a filtering-based estimator with a factor graph optimization (FGO)-based 
GNSS-RTK positioning method (Wen & Hsu, 2021). This method permitted us to 
explore the time correlation between multiple epoch measurements while simul-
taneously enhancing the robustness against the GNSS outlier measurements. 
However, the performance of this method was dependent on the percentage of the 
GNSS outlier measurements involved in the factor graph. In a recent study, Fan 
et al. (2019), employed multiple antennas to enhance the robustness of GNSS-RTK 
against interference from outlier measurements. However, this method relied 
on expensive geodetic antennas. In another recent study, Furukawa et al. (2020) 
improved GNSS-RTK positioning in urban canyons by excluding polluted GNSS 
signals with the assistance of 3D building models and a pre-defined initial guess of 
the position of the GNSS receiver. An increased fixed rate was obtained after select-
ing healthy line-of-sight (LOS) measurements. Recently, Niu et al. (2021) explored 
the loosely-coupled integration of visual-inertial odometry and GNSS-RTK posi-
tioning based on signals from smartphones. However, the performance of this 
integrated system remains limited in urban areas because of the GNSS NLOS recep-
tions. Similarly, Ng and Hsu (2021) proposed the use of multiple hypothesis-based 
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3D building models to aid GNSS-RTK positioning and improve the accuracy of the 
geodetic level GNSS receivers. However, the NLOS satellite exclusion relies on the 
availability of accurate 3D building models and a good initial guess of the GNSS 
receiver position. In particular, an initial guess of the receiver position is required 
in each epoch. This initial guess is typically based on GNSS single point positioning 
using pseudorange measurements which are not accurate in urban canyons.

Additional research was performed that focused on reconstructing (Wen, 2020) 
or sensing (Suzuki & Kubo, 2013; Wen et al., 2019b) the surrounding environmen-
tal features in real-time to improve GNSS positioning. In our previous work (Wen 
et al., 2018; Wen et al., 2019a; Wen et al., 2019b), we proposed methods to promote 
continuous improvements in the GNSS positioning in urban canyons using onboard 
3D lidar sensors and excluding (Wen et al., 2019a) or correcting (Wen, 2020; Wen 
et al., 2019b) potential NLOS measurements. However, we found that the perfor-
mance of NLOS detection based on these methods was limited by the field of view 
(FOV) of the applied 3D lidar sensor. Moreover, 3D lidar was still too expensive 
for low-cost autonomous system applications. Instead of relying on the expensive 
3D lidar sensor, we proposed a method to detect the GNSS NLOS in dense urban 
canyons using a skyward-pointing fish-eye camera that resulted in improved GNSS 
SPP (Bai et al., 2020b). These methods contributed to the alleviation of the adverse 
impacts of GNSS NLOS receptions and would thus improve GNSS-RTK position-
ing in urban canyons. However, this can lead to a secondary problem, i.e., the geo-
metric distributions can be significantly degraded due to the exclusion of NLOS 
receptions from satellites at low elevation angles. In other words, only the satellites 
with high elevation angles can survive the NLOS exclusion. In contrast, to GNSS, 
the visual features from a forward-looking camera are mainly detected from the 
low-lying environmental structures with low elevation angles with respect to vehi-
cles, for example, trees, roadside pillars, and poles. Inspired by the observed com-
plementarity of the low-lying visual landmarks and the healthy but high-elevation 
satellite measurements, we proposed to employ 3D vision to assist with GNSS-RTK 
positioning in urban canyons.

1.3  Related Work on GNSS-Visual Initialization

Given the fact that the raw measurements from the visual and the GNSS are 
in different frames, efficient and reliable initialization of the GNSS-visual will be 
of great significance. The raw visual measurement is located in the body frame 
of the camera. By contrast, the raw GNSS measurement is in the global frame, 
i.e., the Earth-centered Earth fixed (ECEF) frame. Therefore, the objective of the 
initialization was to estimate the extrinsic parameters linking the camera body 
and the ECEF frames at the time that the system starts. Qin et al. (2019) pro-
posed a loosely-coupled integration of the GNSS and the VINS using factor graph 
optimization. Of particular note, the extrinsic parameters connecting the VINS 
local frame and the GNSS global frame are estimated iteratively based on the 
observation from the GNSS and VINS. However, the initialization can only be 
achieved in a batch optimization mode which does not apply to a real-time appli-
cation. A similar initialization strategy was described by Niu et al. (2021). As an 
extension, Liu et al. (2021) proposed to conduct experiments on the GNSS-visual 
initialization using the raw GNSS pseudorange and Doppler measurements. 
However, initialization in this case relied heavily on the accuracy of the pseu-
dorange measurements. In addition, the high-accuracy carrier-phase measure-
ments were not exploited. The carrier-phase measurements differ from the GNSS 
pseudorange measurements and can provide high-accuracy motion constraints 
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between multiple epochs of state once their unknown integer ambiguities have 
been removed. Thus, this paper proposed a carrier-phase ambiguity-free algo-
rithm that can reliably initialize the extrinsic parameters connecting the VINS 
local frame and the GNSS global frame, by exploiting the GNSS pseudorange, 
Doppler, and carrier-phase measurements.

1.4  Contributions of This Paper

A demonstration of the complementarity is shown in Figure 1. To the best of our 
knowledge, this is the first effort directed at solving the major problem of GNSS-RTK 
positioning for autonomous systems via a deep exploration of the complementarity 
between GNSS satellite measurements and visual landmarks in urban canyons.

The key contributions of this paper are as follows:

(1)	 We plan to address the problem of poor geometry resulting from the exclusion 
of GNSS NLOS receptions by employing low-lying visual landmarks to 
improve the geometric constraints of GNSS-RTK. To achieve this, a tightly 
coupled fusion estimator was proposed that would integrate measurements 
from IMU pre-integration, low-lying visual landmarks reprojection, healthy 
but high-elevation GNSS DD pseudorange, and carrier-phase measurements 
together with the Doppler frequency measurements via a factor graph-based 
sliding window optimization method. This will facilitate the exploration of 
the time-correlation of GNSS measurements between multiple epochs. With 
assistance from low-lying visual constraints, the ADOP was significantly 
decreased (i.e., better geometric constraints for GNSS-RTK). The estimated 
state of the system was then employed as the float solution for the ambiguity 
resolution of GNSS-RTK, which could be used to achieve a fixed solution. It 
is notable that the integration of the visual measurements also contributes to 
a more accurate float position estimate and is also significant for achieving 
a fixed solution. 

(2)	 The proposed estimator involves multiple data sources with different 
observation models that could induce additional non-linearity. As a result, 
the performance of the estimator relies heavily on the initial guess of the 

FIGURE 1 Demonstration of the strong complementarity between the low-lying visual 
landmarks and healthy but high-elevation satellite measurements
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system state. Thus, a carrier-phase ambiguity-free algorithm was proposed 
that would permit careful initialization of the extrinsic parameters between 
the VINS local frame and the GNSS global frame as well as the integer 
ambiguity of the DD carrier-phase measurements.

(3)	 We will verify the proposed method through several challenging data sets 
collected in urban canyons of Hong Kong using low-cost automobile-level 
GNSS receivers together with an automobile visual/inertial sensor suite.

The remaining sections of this paper are organized as follows: Section 2 includes 
an overview of the proposed method. GNSS measurement modeling is discussed 
in Section 3. Tightly-coupled integration of GNSS-RTK/visual/inertial systems is 
presented in Section 4 followed by an interpretation of the system initialization 
in Section 5. Several real-life experiments conducted to evaluate the effectiveness 
of the proposed method are presented in Section 6. Finally, the conclusions and 
future work will be discussed in Section 7.

2  SYSTEM OVERVIEW AND NOTATIONS

2.1  System Overview

An overview of the proposed method is shown in Figure 2. The system consists 
of two parts: 

(1)	 GNSS NLOS outlier removal. The real-time environmental understanding 
aided by a sky-pointing fish-eye camera and its application in GNSS NLOS 
exclusion is shown in the light blue shaded boxes in Figure 2. The outcomes 
presented in this section include satellite visibility, line-of-sight (LOS), or 
NLOS receptions. This was based on our previous work and improved by using 
the U-net (Ronneberger et al., 2015) to separate the sky from the non-sky area. 
Additionally, the high-cost 3D lidar sensor to aid in correcting the detected 
NLOS delay was not employed in this study. Instead, the NLOS measurements 

FIGURE 2 Overview of the proposed method DNN and VI denote deep neural networks and 
visual/inertial, respectively. Acc and Gyro denote the accelerometer and gyroscope measurements, 
respectively.
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would be directly excluded from signals received from the satellites based 
on the segmented image. An illustration of the sky-view image is shown in 
Figure 2(a) with a sky view that includes the building roofs, trees, and in 
some cases even the roofs of surrounding moving vehicles. The segmented 
sky view image prepared using U-net is shown in Figure 2(b), with white and 
black pixels denoting the sky and non-sky areas, respectively. Subsequently, 
the satellites can be projected on the segmented image, based on their 
elevation, azimuth angles, and the heading (provided by the high-frequency 
pose estimation from IMU, which will be discussed in Section 4) from north 
of the earth of the sky-pointing camera. GNSS NLOS measurements can 
then be detected (Figure 2[c]); only healthy LOS measurements are utilized 
(Figure 2[d]). Additional details regarding GNSS NLOS detection via the sky-
pointing camera can be found in our earlier work (Bai et al., 2020b).

(2)	 Improving the geometry with visual landmark measurements. The 
tightly coupled fusion estimator generated by integrating the measurements 
from IMU pre-integration, low-lying visual landmarks reprojection from 
the forward-looking camera, and healthy (high elevation angle) GNSS LOS 
measurements from a factor graph-based sliding window optimization are 
shown in the lavender-shaded boxes in Figure 2. The outcomes presented in 
this section include the improved pose estimation of the system. A concept 
illustration of the proposed geometric improvement is shown in Figure 1. 
When the vehicle starts moving from the left side of Figure 1 which denotes 
an open-sky and GNSS-friendly scenario, all the GNSS measurements are 
LOS and a fixed solution can be obtained by GNSS-RTK with centimeter-
level accuracy. The surroundings are mainly composed of low-lying trees 
which can provide low-lying visual features that will further smooth the 
state estimation. When the vehicle has traveled to the right side of Figure 1 
which includes a GNSS-challenging urban canyon scenario, the GNSS NLOS 
reception would be detected (the red satellite icon in Figure 1). Fortunately, 
the low-lying blue visual landmarks and the remaining few LOS satellites (the 
green satellite icon in Figure 1) are highly complementary, thus providing 
the main inspiration for this study.

2.2  Frame Definitions

Because these multiple data sources arise from different spatial frames, it will be 
important to define the associated coordinates. The following frames are defined 
as described by Liu et al. (2021) and will provide a reference for the remaining 
sections of this paper.

(1)	 Earth-centred, earth-fixed (ECEF) frames (Enge, 1994). This refers 
to a global frame typically used to define the position of the satellites and 
associated measurements. (⋅)WE has been adopted to denote the variable 
represented in the ECEF frame.

(2)	 East, north, and up (ENU) frames (Enge, 1994): This refers to another 
commonly used global frame of GNSS with the x, y and z axis of ENU frame 
pointing to the east, north, and up directions, respectively. (⋅)WG has been 
adopted to denote the variable represented in the ENU frame.
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(3)	 Local world frames (Liu et al., 2021): This refers to a local world frame of 
pose estimation from local sensors (such as visual and inertial). This is the 
reference frame of the VINS in this study. (⋅)WL has been adopted to denote 
the variable represented in the local world frame.

(4)	 Sensor frames: The sensor frame is fixed on the sensor body. In this paper, 
sensor frames include the IMU frame, the camera frame, and the GNSS receiver 
frame, which are denoted as (⋅)b, (⋅)c and (⋅)r, respectively. Similar to the work 
describing VINS-Mono (Qin et al., 2018), the IMU frame was selected as the 
target frame for state estimation in this study.

2.3  Notations

In this paper, matrices are denoted in uppercase with bold letters. Vectors are 
denoted in lowercase with bold letters. Variable scalars are denoted with itali-
cized letters. Constant scalars are denoted as lowercase letters. To ensure that the 
proposed pipeline has been presented clearly, the following major notations are 
defined here and used consistently in the remaining sections of this paper.

a)	 The pseudorange measurement received from a satellite s at a given GNSS 
epoch rt  is expressed as ρr

s
t
. The subscripts r and t denote the GNSS receiver 

and the time index, respectively. The superscript s denotes the index of the 
satellite at the given epoch rt .

b)	The Doppler measurement received from satellite s at a given epoch rt  is 
expressed as dr

s
t
.

c)	 The carrier-phase measurement received from a satellite s at a given epoch rt  
is expressed as ψ r

s
t
.  

d)	Let RA
B  denote the rotation matrix that rotates a vector in the frame {A} to 

frame {B}, and the qA
B  is its quaternion form. A similar definition is applied to 

the definition of translation, e.g., pA
B  denotes the translation from the frame 

{A} to frame {B}. The transformation between both frames is expressed as 
T R pA
B

A
B

A
B= [ , ]. 

e)	 The position of the satellite s at a given epoch rt  is expressed as 
pr
WE s

r x
WE s

r y
WE s

r z
WE s

t t t t
p p p,

,
,

,
,

,
,( ) ., ,= T  The “T” denotes the transpose operator. 

f)	 The velocity of the satellite s at a given epoch rt  is expressed as 
vr
WE s

r x
WE s

r y
WE s

r z
WE s

t t t t
v v v,

,
,

,
,

,
,( ) ., ,= T

g)	 The position of the GNSS receiver at a given epoch rt  is expressed as 
pr
WE

r x
WE

r y
WE

r z
WE

t t t t
p p p= ( ) ., ,, , ,

T

h)	The velocity of the GNSS receiver at a given epoch rt  is expressed as 
vr
WE

r x
WE

r y
WE

r z
WE

t t t t
v v v= ( ) ., ,, , ,

T

i)	 The clock bias of the GNSS receiver at a given epoch rt  is expressed as δr
r j
t

, ,  with 
the unit in meters. The variable j denotes the associated satellite systems, such 
as GPS and BeiDou satellite systems. The receiver clock bias drift is expressed as 
δr
r
t
. Note that all the satellite systems share the same clock bias drift.

j)	 The clock bias of satellite s at epoch rt  is expressed as δr
s
t
.  The satellite clock 

bias is expressed as δr
s
t
.  

k)	The position of the base (reference) station is expressed as pe e x e y e zp p p= ( ) ., ,, , ,
T  

The variables ρe r
s
t,  and ψ e r

s
t,  denote the pseudorange and range measurements 

of carrier-phase from satellite s received by the reference station at epoch rt .  
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The subscript “e” denotes the reference station.
l)	 The extrinsic parameter between the camera and IMU sensor frame is 

expressed as T R pc
b

c
b

c
b= [ , ].

The extrinsic parameter between the GNSS receiver and IMU sensor frame is 
expressed as pr

b .

2.4  GNSS Measurement Modeling

In this Section, the modeling of the GNSS measurements will be described, 
including the DD pseudorange and carrier-phase measurements together with the 
Doppler measurements.

2.4.1  DD pseudorange/carrier-phase measurements modeling

In terms of the measurements from the GNSS receiver, each pseudorange mea-
surement, ρr

s
t
,  can be expressed as shown in Equation (1) (Takasu & Yasuda, 2009):

	 � �r
s

r
s

r
r j

r
s

r
s

r
s

r
s

t t t t t t t
r c I T� � � � � �( ),� � � (1)

where rr
s
t

 represents the geometric range between the satellite and the GNSS 
receiver. Ir

s
t

 denotes the ionospheric delay distance; Tr
s
t

 represents the tropospheric 
delay distance, and εr

s
t
 represents the errors caused by the multipath effects, NLOS 

receptions, receiver noise, and antenna phase-related noise. Due to the potential 
clock-related and atmosphere-related errors involved in the generation of raw 
pseudorange measurements, the accuracy of the conventional pseudorange-based 
SPP (Rycroft, 1997) is limited to several meters. Similarly, the carrier-phase mea-
surement, ψ r

s
t
,  is expressed as shown in Equation (2) (Takasu & Yasuda, 2009):

	 � � � �j r
s

r
s

L r
r j

r
s

r
s

r
s

r
s

r
s

r
s

t t t t t t t t t
r c I T B d� � � � � � � �( ),� �  � (2)

with B Nr
s

r r
s

r
s

t t t t
� � �� �, ,0 0

where Br
s
t

 refers to the carrier-phase bias, the variable λ j  represents the car-
rier wavelength of the satellite system j, and the variable d r

s
t

ψ  represents the 
carrier-phase correction terms, including antenna phase offsets and variations, 
station displacement by earth tides, phase windup effect, and the relativity correc-
tion on the satellite clock. A detailed formulation of the carrier-phase corrections 
can be found in Takasu and Yasuda (2009). The variable ψ rt , 0

 represents the ini-
tial phase of the receiver local oscillator. Similarly, ψ 0, r

s
t

 is the initial phase of the 
transmitted navigation signal from the satellite. The variable Nr

s
t

 represents the 
carrier-phase integer ambiguity which is expected to be an integer value. r

s
t

 rep-
resents the errors caused by the multipath effects, NLOS receptions, receiver noise, 
and antenna delay.

To improve the GNSS positioning accuracy, the DD method was adopted in 
GNSS-RTK positioning to remove systematic errors including atmospheric and 
clock-related errors. The illustration in Figure 3 presents the DD operation. Given 
the pseudorange and carrier-phase measurements received from a satellite s  and a 
master satellite w, the DD pseudorange measurement ( ),ρDD t

s  can be expressed as 
follows in Equation (3):
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	 � � � � �DD r
s

r
s

e r
s

r
w

e r
w

t t t t t, , ,� �� � � �� � � (3)

The variables ρe r
w
t,  and ρe r

s
t,
� represent the pseudorange measurements received 

by the reference station denoted by the subscript “e”.
Generally, the satellite with the highest elevation angle tends to encounter the 

fewest multipath and NLOS errors. Therefore, the satellite w with the highest eleva-
tion angle is selected as the master satellite. By stacking Equations (1) through (3), 
the following formula can be obtained as shown in Equation (4):

	 � �DD r
s

r
s

e r
s

r
w

e r
w

DD r
s

t t t t t t
r r r r, , , ,� �� � � �� � � � (4)

where εDD r
s

t, denotes the noise related to the DD pseudorange measurements. After 
applying the DD process to the pseudorange measurements, the derived ρDD r

s
t,  will 

be free of the clock bias and atmospheric effects (Takasu & Yasuda, 2009), based on 
the premise that the GNSS measurements received from the user-end receiver and 
the station receiver share the same atmospheric error.

Similarly, the DD carrier-phase measurement ( ),ψ DD r
s

t
 of satellite s  is expressed 

as indicated in Equation (5) (Takasu & Yasuda, 2009):

	 � � � � �DD r
s

r
s

e r
s

r
w

e r
w

t t t t t, , ,� �� � � �� � � (5)

The variables ψ e r
s

t,  and ψ e r
w

t, represent the carrier-phase measurements received 
by the reference station. Similarly, the clock bias and atmospheric effects are 
waived from ψ DD r

s
t,
.  By stacking Equations (2) through (5), the following formula 

can be obtained as shown in Equation (6):

	 � � �j DD r
s

r
s

e r
s

r
w

e r
w

j DD r
s

DD r
s

t t t t t t t
r r r r N, , , , ,� � � � �� � � � �  � (6)

where DD r
s

t,  is the noise related to the DD carrier-phase measurements and NDD r
s

t,  
is the DD integer ambiguity to be estimated.

FIGURE 3 Demonstration of the double-difference (DD) technique (a) GNSS receiver 
installed in the autonomous system, and (b) Reference station installed in open sky area with 
geodetic level GNSS receiver.
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2.4.2  Doppler measurements modeling

In terms of the measurements from the GNSS receiver, each Doppler measure-
ment, dr

s
t
, is expressed as indicated in Equation (7) (Takasu & Yasuda, 2009):

	 d cr
s

j
r
s

r
WE s

r
WE

r
r j

r
s

r
s

t t t t t t t
� � � �� � �� �� �1
�

�e v v, ,
 � � � (7)

where ςr
s
t
 refers to the noise related to the received Doppler measurement and erst  

represents the LOS vector connecting the GNSS receiver and the satellite s  which can 
be calculated as indicated in Equation (8):

	 e
p p

p pr
s r

WE s
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r
WE s

r
WEt

t t
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,

,
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where the operator ||*|| is employed to obtain the norm of the associated vector. 
Because it encodes the motion difference between the satellite and the GNSS 
receiver, the Doppler measurement is employed to constrain the relative motion of 
the GNSS receiver between two consecutive epochs. The Doppler measurements 
are incorporated into the factor graph in Section 4.

2.5  GNSS-RTK Positioning By Weighted Least Square 
Estimation

2.5.1  Float solution estimation

Given S +1 satellite measurements at a given epoch rt , the DD pseudorange and 
carrier-phase measurements can be structured as ��DD r DD r DD r DD r

S
t t t t, , , ,[ ], , ,� � �� � �0 1 1 T 

and ��DD r DD r DD r DD r
S

t t t t, , , ,[ ] ,, , ,� � �� � �0 1 1 T  respectively. The DD integer ambi-
guities related to the S DD measurements can be structured as NDD rt, = 
[ ] ., , ,, , ,N N NDD r DD r DD r

S
t t t

0 1 1� � T The linearized DD observations can be expressed as 
indicated in Equation (9):
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The vectors εεDD rt,  and DD rt,  represent the stacked noise related to the S  DD 
carrier-phase and pseudorange measurements, respectively, while pr

WE
t

 and the 
NDD rt,  represent the states to be estimated. Grt

 represents the geometric matrix 
related to the GNSS receiver position and the received S  satellites which be 
expressed as indicated in Equation (10):
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where the size of the geometric matrix Gt
d  is S×3. Therefore, the float solution of 

[ ],p Nr
WE

DD rt t

T  can be calculated iteratively via weighted least-square estimations 
as indicated in Equation (11):
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where Wrt
 represents the weighting matrix related to εεDD rt,  and DD rt,  that can 

be calculated based on the satellite elevation angle and the signal-to-noise ratio 
(SNR) (Herrera, et al. 2015). After solving Equation (11), it is not guaranteed that 
the estimated ambiguity in NDD rt,  will be an integer value due to the noise associ-
ated with the DD measurements. As a result, the accuracy of the estimated pr

WE
t

 is 
usually within 1 meter in a sparsely-populated area. Because the DD ambiguity in 
NDD rt,  should be an integer value, it should be resolved to obtain a fixed solution 
for GNSS-RTK, thereby achieving centimeter-level positioning accuracy that will 
be explained in the sub-section to follow.

2.5.2  Integer ambiguity resolution 

Assuming the covariance matrix Q rt
 associated with the estimated NDD rt,  and 

pr
WE
t

 is denoted as indicated in Equation (12):
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Q Qr
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� (12)

where Q Qpn np= T  are the float covariance matrices, and the subscripts p and n 
represent the position and DD ambiguity, respectively. Meanwhile, Q rt

 can be esti-
mated as indicated in Equation (13):

	 Q
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Wrt
ρ  and Wrt

ψ  denote the covariance matrices associated with the DD 
carrier-phase and pseudorange measurements. Therefore, the integer ambiguity res-
olution problem may be solved by finding a set of integer DD ambiguities denoted 
by


NDD rt,  and associated fixed position denoted by pr
WE
t

 based on the float posi-
tion solution [ ],p Nr

WE
DD rt t

T  and associated covariance Qrt
.  The LAMBDA algo-

rithm (Teunissen, 2003) can be adopted as an efficient solution to this problem. As 
described in a previous study, (Teunissen, 2003), the first step will be to decorrelate 
the ambiguities through a z-transform (Teunissen, 2003) T

,
ˆ

tt DD r=Z Z N  to obtain a 
near-diagonal form of the covariance matrix Qnn  as shown in Equation (14):

	 T
ˆ ˆt tz z nn=Q Z Q Z � (14)

Subsequently, the optimal candidate (zt) of the integer set in z space can be found 
by minimizing the following weighted square norm as shown in Equation (15):

	
1 ˆ ˆ

2ˆarg min
Zt z zt t

t−∈
−

Z Q
z z



S

� (15)

The search for the minimization is performed by testing the potential grid points 
inside the known integer candidates. During the searching process, multiple candi-
dates will be found within the ellipsoid. The candidate that leads to the minimum 
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square norm is selected as the optimal integer solution (denoted žt). Then, žt is 
transformed back to obtain the fixed positioning solution ˇ .

t

WE
rp  Upon validation by 

the simple ratio-test (Teunissen, 2003), the fixed solution ˇ(pr
WE
t
)  can be expressed 

as indicated in Equation (16):

	 p p Q Q N Nr
WE

r
WE

pn nn DD r DD rt t t t
� � ��1 ( ), ,

ˇ ˇ � (16)

Thus, both the fixed solution and integer ambiguity can be estimated using 
this method. In an open-sky area, the fixed solution can be achieved with 
centimeter-level accuracy (Takasu & Yasuda, 2009).

2.5.3  Effects of GNSS NLOS reception on GNSS-RTK 
positioning 

In contrast to open-sky conditions, numerous NLOS receptions are introduced 
in an urban canyon environment with dense and tall building structures. A typical 
urban canyon with 12 satellites, six of which transmit NLOS receptions (red 
circles) is shown in Figure 2(c). For this model, we assume that the first m satellites 
transmit NLOS measurements with certain bias in pseudorange and carrier- 
phase measurements denoted by 0 1 1 T

, , , , , , , ,[ , , , ,0, ,0]
t t t t

m
DD b r DD b r DD b r DD b rρ ρ ρ −= … …ρ  and 

��DD b r DD b r DD b r DD b r
m

t t t t, , , , , , , ,[ ] ,, , , , , ,� � ��� � �0 1 1 0 0 T  respectively. The subscript b 
represents the bias. Therefore, the consequent bias in the float solution can be esti-
mated as shown in Equation (17):
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Note that this formula is based on the premise that the positioning error caused 
by the GNSS NLOS can only exert only a minor impact on the geometric matrix 
rt

, as the satellites are about 20,000 kilometers away from Earth (Zampieri et al., 
2020). As a result, the accuracy of the float solution estimated from Equation (11) 
is degraded with bias terms ∆pr

WE
t

 and ∆NDD rt,
.  According to Teunissen (2001), 

the success rate of the integer ambiguity resolution in the presence of bias can be 
derived using Equation (18):

	
1 1
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with triangular factorization Z Q Z L D LT T
nn z z z=  where ( )tbP z = ž  represents the 

success rate of correct integer ambiguity resolution. The subscript s  represents the 
index of the DD measurements while cs  represents a ( )S � �1 1  vector with its s-th 
element equaling 1 for entries equaling 0. The function ����  can be expressed by 
Equation (19) as follows:

	 �� �x e dy
x y

� ���
�1

2

1
2

2

�

( )
� (19)

Therefore, ∆NDD rt,  caused by biased terms from the NLOS receptions can also 
decrease the success rate of the integer ambiguity resolution. In this paper, the 
sky-pointing camera is employed to detect the exclusion of NLOS, as will be dis-
cussed in Section 3A.
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2.5.4  Effects of satellite geometry on GNSS-RTK positioning

Assuming that the GNSS NLOS receptions can be effectively detected and 
removed, the success rate of the integer ambiguity resolution can be re-written as 
shown in Equation (20):

	 1
0

1 1
2

( 2) s
b s T

s z s
tP −

=

  
 = =∏ Φ −     c D c

z ž � (20)

According to Wang et al. (2020), the aforementioned formula related to the suc-
cess rate can be further simplified as shown in Equation (21):
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where the operator det( )∗  is employed to calculate the determinant of the Qnn. 
Given the certain weighting matrix, the success rate of the integer ambiguity reso-
lution is directly determined by det nn

S ( )Q−1  which is also denoted as ADOP and 
is further dependent on the satellite geometry matrix Grt

 (K. Wang et al., 2020). 
Unfortunately, the GNSS NLOS exclusion can significantly decrease the number 
of available satellites. For example, only six satellites with high-elevation angles 
remain after the GNSS NLOS exclusion, as shown in Figure 2(c). Therefore, the 
LOS of the received satellite is deterministic and uncorrelated since different sat-
ellites have different elevations and azimuth angles. As a result, the rank of Grt

 
decreases and induces an increase in det nn( )Q  (K. Wang et al., 2020), thus reduc-
ing the success rate of integer ambiguity resolution. This is one of the major prob-
lems limiting the performance of GNSS-RTK positioning in urban canyons even 
when the potential GNSS NLOS receptions are removed (Furukawa et al., 2020). 
To fill this gap, the low-lying visual landmarks are adopted here for the first time 
to compensate for the removal of low-elevation angle NLOS satellites and thus to 
improve the geometric constraints. This will be discussed in Section 4.

3  IMPROVING GEOMETRY: TIGHTLY-COUPLED 
INTEGRATION OF GNSS-RTK/VISUAL/INERTIAL

In this section, we will discuss the use of low-lying visual landmarks to improve 
geometric constraints.

3.1  System State and Factor Graph Structure

To make use of the visual measurements, we will refer to the work of Qin et al. 
(2018). The visual measurements and IMU measurements are tightly integrated 
with the GNSS DD pseudorange and carrier-phase measurements, together with 
the Doppler measurements using the sliding window factor graph optimization 
method. The GNSS measurements are reported in the ECEF frame and are thus 
different from the VINS system. The extrinsic parameters between the world local 
frame ( )⋅ WL  of the conventional VINS and the GNSS ECEF frame remain unknown 
and will need to be estimated simultaneously. To achieve this, the states of the 
tightly-coupled system include the following:
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a)	 The position and orientation of the IMU body related to the world local frame 
are denoted as pb

WL
k

 and qb
WL
k

, respectively, with bk  representing the body 
frame, in which the k -th image is captured.

b)	The velocity of the IMU body related to the world local frame is denoted as 
vb
WL
k

 together with the bias of the gyroscope bwk
 and accelerometer bak .

c)	 The inverse depth of the visual landmark is denoted as fm.
d)	The extrinsic parameter between the world local frame ( )⋅ WL  and the ENU 

frame is denoted as T R tWL
WG

WL
WG

WL
WG= [ , ].  Because the directions of the z-axis 

represent both the ENU frame and the world local frame of VINS (Qin et al., 
2018), the RWL

WG  will include only one unknown degree, i.e., the yaw offset 
between both frames. 

e)	 The receiver clock drift is denoted as δr
r
t
.  

Therefore, the state set of the system inside a sliding window can be expressed as 
indicated in Equation (22):

	 �� � � �� �[ , , , , , , ]x x T0 1 0 1K M WL
WGf f � (22)

With x p q b bk b
WL

b
WL

a w r
r

k k k k t
� [ , , , , ]�

where K  represents the size of the sliding window and M  represents the total 
number of features involved in the sliding window. Since the data frequency of 
the GNSS raw measurements is different from the image, we interpolate (Ch’ng 
et al., 2019) the intermediate GNSS measurement at time rt  towards the keyframe 
at time bk .

The factor graph structure of the proposed tightly-coupled integration via a 
sliding window factor graph optimization is shown in Figure 4. Five types of fac-
tors are involved in generating the factor graph. Specifically, Doppler and IMU 
pre-integration factors provide a relative constraint between two consecutive 
epochs. The DD pseudorange and carrier-phase measurements provide abso-
lute constraints related to the ECEF frame that are free of drift. The visual factor 

FIGURE 4 Factor graph structure of the proposed tightly coupled integration Five types of 
factors contribute to a sliding window. The red and green circles denote the DD pseudorange and 
carrier-phase factors, respectively. Note that in this example the DD factor only connects a single 
epoch for simplicity. However, the DD factor is correlated with two consecutive epochs due to the 
interpolation. The purple and light blue rectangles denote the IMU pre-integration and Doppler 
factors, respectively. The blue six-pointed stars denote the visual landmarks.
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provides the multi-epoch constraints across the factor graph. The remaining text in 
this Section presents formulations of these factors.

3.2  IMU Pre-integration Factor

Similar to the findings presented by Qin et al. (2018), the IMU pre-integration 
technique (Forster et al., 2016) was employed to integrate several measurements 
(inertial measurements between time intervals t t tk k� �[ , ]1 ) into a single factor 
between two consecutive frames bk  and bk+1; the residual r ( )⋅  is expressed as 

1
ˆr ( , ).k

k

b
b +

z χ  Because the IMU pre-integration employed in this study is identical 
to that presented by Qin et al. (2018), the reader may refer to Equations (14), (16), 
and (17) from this paper for additional details on IMU pre-integration.

3.3  Visual Landmark Factor

The visual measurement employed in this study is a set of features identi-
fied by the Shi-Tomasi corner algorithm (Shi, 1994). After feature detection, the 
optical-flow feature tracking algorithm (Lucas & Kanade, 1981) was performed to 
track them between consecutive epochs. For the details of the feature detection 
and tracking, readers are referred to Bai et al. (2020a). Considering that the l-th 
feature was first observed in the i-th image and again in j-th image, let ( , ˆˆ i ic c

l lu v ) 
represent the pixel position of l-th feature in the i-th image, and let ( , ˆˆ j jc c

l lu v ) repre-
sent the pixel position of l-th feature in the j-th image. Therefore, the reprojection 
model of l-th feature from the i-th image to the j-th image can be further expressed 
as indicated in Equation (23):
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Let pl
c j  represent the 3D coordinates of the l-th feature with:

	 p
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l
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j
j

j
= � (24)

where pl
c j  represents the expected observation in the normalized plane. Let the 

observation measurement of l-th feature in the j-th image be p l
c j  as shown in 

Equation (25):
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c
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l c c
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−
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hence, the reprojection residual model can be derived as follows (Equation (26)):

	
r ( , ) ( )ˆ jj j

cc c
ll l= −z p p χ � (26)

where   represents the set of features that have been observed at least twice and 
r ( )⋅  represents the residual of the l-th feature measurement in the j-th image. ˆ jc

lz  
represents the observation measurement.
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3.4  GNSS DD Pseudorange/Carrier-Phase Factor

Because the GNSS measurements are represented in the ECEF frame, the extrin-
sic parameter between the ECEF frame and the world local frame can be expressed 
as T T TWL

WE
WG
WE

WL
WG= . In this paper, the first point is selected as the reference position 

for the ENU frame, which can be expressed as pref
WE  with p pWG

WE
ref
WE= .

3.4.1  DD pseudorange factor

Based on a given DD pseudorange measurement received at epoch rt , the resid-
ual can be expressed as indicated in Equation (27):
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where the variable pr b
WL
t ,

 represents the position of the IMU body frame (IMU sen-
sor frame) at the given epoch rt . rr

s
t

 and rr
w
t

 represent the range distances between 
the GNSS receiver and the satellite s  and w . They can be expressed as indicated 
in Equation (28):
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Similarly, re r
s
t,  and re r

w
t,  represent the range distance between the reference sta-

tion and satellite s and the master satellite w  (as shown in Figure 3). They can be 
expressed as shown in Equation (29):

re r
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,

� �p p
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et t,
,

� �p p � (29)

Likewise, pr
WL
t

 in (28) can be expressed as shown in Equation (30):

	 p p R pr
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r
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t t t
� �, , � (30)

where pr
b  represents the translation between the GNSS receiver and the IMU sen-

sor frame. However, the position estimation of the IMU body frame pr b
WL
t ,

 at GNSS 
epoch rt  cannot be obtained directly. Assuming that the GNSS epoch rt  locates 
between two image keyframes [ , ]t tk k+1  with r t tt k k� �[ , ],1  the following linear 
interpolation (Gong et al., 2020) can be adopted as shown in Equation (31):
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3.4.2  DD carrier-phase factor

Given a DD carrier-phase measurement received at epoch rt, the residual can be 
expressed as indicated in Equation (32):
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Similarly, the uncertainty related to the DD carrier-phase factor rψ ψ( , ), ,DD r
s

r b
WL

t t
p  

is calculated based on the SNR and elevation angle (Herrera et al., 2015).

3.4.3  GNSS Doppler factor

Given a Doppler measurement received at epoch rt, the residual can be expressed 
as indicated in Equation (33):
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With v v R p br
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rt t t t rt
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where the vr
WL
t

 represents the velocity of the GNSS receiver at epoch rt  related to 
the local world frame. The operator [ ]� �  is employed to obtain the skew-symmetric 
matrix corresponding to a vector. Similar time interpolation is employed for the 
velocity constraint. er

s
t

 which represents the LOS vector connecting the GNSS 
receiver and the satellite s . This can be expressed as shown in Equation (34):
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3.5  Marginalization Factor

To maintain the efficiency and consistency of the state estimation inside of the slid-
ing window, the oldest keyframe is marginalized and the associated factors are added 
as a prior, including an IMU pre-integration factor, visual factor, and GNSS-related 
factors, by applying the Schur complement (Sibley et al., 2010). Marginalization plays 
an important role in sliding window optimization as it incorporates historical infor-
mation into a prior. The information from marginalization is denoted as {rp, Hp} with 
the rp and Hp representing the prior residual and information matrix, respectively.

3.6  Tightly-Coupled Optimization

Based on the factors derived above, the states inside the sliding window can be 
estimated by solving the following objective function as shown in Equation (35):
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where ΣΣ  and ΣΣ  represents the covariance matrix related to the IMU 
pre-integration and visual reprojection, respectively. The uncertainty ( ),�� r

s
t

 
related to the DD pseudorange factor rρ ρ( , ), ,DD r

s
r b
WL

t t
p  is calculated based on the 
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SNR and elevation angle (Herrera et al., 2015). A similar method is applied for the 
uncertainty estimation of the DD carrier-phase ( ),�� r

s
t

 and � �� � �, ,r
s

r
s

t t
k�  with a 

scaling factor k� � 100  (Takasu & Yasuda, 2009). Similarly, the uncertainty of the 
Doppler measurements ( ),σd r

s
t

 is � �d r
s

d r
s

t t
k, ,� �  with a scaling factor kd = 3.

3.7  Covariance Estimation and Resolution of Integer 
Ambiguity

The float solution is obtained by solving the tightly coupled cost function as shown 
in Equation (35). To resolve the integer ambiguity, the covariance related to the posi-
tion and float ambiguity is required. With the assistance of the visual constraint and 
IMU pre-integration constraint, the combined linearized model connecting the float 
solution and observation can be expressed as shown in Equation (36):
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where   and   represent the set of IMU and visual measurements involved. 
Therefore, the covariance can be estimated as shown in Equation (37):

	 Q

G I

G

G

G

G

r
DVA

j r S S

r

r
d

r

r

t

t

t

t

t

t

3

1

0

0

0

0

�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�

�
�� �

�

B

C ��
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�

�
�

T

r
DVA

j r S S

r

r
d

r

r

t

t

t

t

t

t

W

G I

G

G

G

G

3

1

0

0

0

0

� �

�

B

C

��
�
�
�
�

�

�

�
�
�
�
�
�
�
��

�

�

�
�
�
�
�
�
�
��

�1

� (37)

where Wr
DVA

t

3  represents the weightings involving the uncertainty of the GNSS DD 
carrier-phase ( ),Wrt

ψ  DD pseudorange ( )Wrt
ρ  and Doppler ( )Wr

d
t

 measurements, and 
visual ( )Wrt

  and inertial pre-integration ( )Wrt
  measurements, which can be further 

expressed as indicated in Equation (38):
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In contrast to the conventional GNSS-RTK positioning, in which the covariance 
of the float ambiguity is dominated by the geometry of surviving satellites after the 
GNSS NLOS exclusion, the position of the GNSS receiver is constrained by both 
DD satellite and visual measurements. To present the Qr

DVA
t

3  in a more representa-
tive form, it can be simplified as shown in Equation (39):
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Therefore, the covariance of the float ambiguity is further constrained by the 
addition of G W G G W G G W Gr

d
r
d

r
d

r r r r r rt

T

t t t

T

t t t

T

t t
+ +B B B C C C .  Specifically, given the assump-

tions that: (1) the visual landmark measurements have an accuracy that is similar 
to the DD pseudorange measurements and (2) the geometry matrix r

DVA
t

3  is a 
full rank, which means that the satellite and the visual measurements are uncor-
related and the uncertainty associated with the float ambiguity will be decreased 
(Wang et al., 2020). This would result in a decrease in the determinant of Qnn ,  
thereby increasing the success rate ])( [ tbP =z ž  of integer ambiguity resolution. 
This will be evaluated in the experimental validation presented in Section 6.

4  SYSTEM INITIALIZATION

The initialization of the system state is significant for an estimator with high 
nonlinearity related as shown in Equation (35). This only needs to be done once 
when the system starts up; this is one of the major differences between the 3D 
building model-aided GNSS positioning method and the initialization of the 
system state discussed in this study. The initialization presented here involves 
primarily (1) the visual/inertial (VI) initialization and (2) GNSS-VI initialization 
which refers to the extrinsic parameters connecting GNSS-RTK and VINS. These 
will be presented in the following Section.

4.1  VI Initialization

The VI initialization includes the recovery of the scale of the features as well as the 
bias of the gyroscope, accelerometers, and other elements. We used the work of Qin 
et al. (2018) to complete the visual/inertial initialization. Meanwhile, the outcome 
of the VI initialization includes a set position and velocity of the keyframes inside 
the sliding window, denoted by { | , , }pb

WL
k

k K� � �0 1  and { | , , },vb
WL
k

k K� � �0 1  
which will be used subsequently for the GNSS-VI initialization.

4.2  GNSS-VI Initialization

The GNSS-VI initialization aims to generate an initial guess for various 
GNSS-related states, including integer ambiguity, receiver clock bias drift rate, and 
the extrinsic parameter ( )TWLWG  between the ENU frame and the world local frame. 
Conventionally, the initial guess of the GNSS-related states is estimated using an 
epoch-by-epoch-based weighted least squares (WLS) approach (Takasu & Yasuda, 
2009). Subsequently, the initial guess of the extrinsic parameters TWLWG  can be opti-
mized by aligning the two trajectory sets estimated from the VI initialization and 
GNSS WLS, respectively (Liu et al., 2021). However, the potential of the Doppler 
measurements is neglected when using this approach. By contrast, Doppler mea-
surements are considered in the second stage of initialization after VI initialization 
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and GNSS SPP. The velocity is then estimated from GNSS Doppler measurements 
with VI used to align the local and global frames (Cao et al., 2022). However, the 
carrier-phase is still not adapted for this work due to the unknown integer ambi-
guity. To benefit from the Doppler and carrier-phase measurements with very high 
precision, we propose a method in which we estimate the velocity and trajectory 
sets inside a sliding window that is based simultaneously on the Doppler, DD pseu-
dorange, and carrier-phase measurements.

Given the fact that the carrier-phase measurements received from the same sat-
ellite s  inside the sliding window involve the same integer ambiguity value, a left 
null space matrix is employed to eliminate the shared integer ambiguity within the 
sliding window. This facilitates the utilization of the DD carrier-phase measure-
ment without resolving the known integer ambiguity.

Based on a set of carrier-phase measurements from satellite s  received in mul-
tiple discrete epochs, they can be stacked into the following form as indicated in 
Equation (40):
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with m r r r rr t
s

r
s

e r
s
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w
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where K  represents the size of the sliding window. This means that satellite s  is 
tracked by the GNSS receiver continuously for K  epochs. The mr t

s
,  is defined for 

simplicity. Given the fact that the carrier-phase measurements inside the window 
share the same integer ambiguity, Equation (40) can be rewritten as follows:
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The compact form of Equation (41) can be further organized by multiplying a left 
null space matrix Gr k

s
,  on both sides of Equation (40). Hence, the following form 

can be obtained as shown in Equation (42):
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Therefore, Equation (42) is free of ambiguous variables which are eliminated 
by a left multiplication of the left null space matrix GDD K

s
, .  The elimination 

of the integer ambiguity was based on a study published by Li and Mourikis 
(2013) in which a similar elimination was employed to avoid the repetitive esti-
mation of the position of landmarks. The feasibility of the integer ambiguity 
elimination via the left null space matrix was presented in our recent study 
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(Bai et al., 2022), in which the GNSS Doppler/pseudorange fusion is smoothed 
by the ambiguity-free carrier-phase measurements. Therefore, the residual of 
the ambiguity-free DD carrier-phase measurement can be derived as indicated 
in Equation (43):
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where ψ s  represents a set of DD carrier-phase measurements for satellite s  inside 
a sliding window with the same integer ambiguity. Therefore, the trajectory 
and the velocity sets of the sliding window can be estimated based on Doppler, 
DD pseudorange, and ambiguity-free carrier-phase measurements as shown in 
Equation (44):
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where   represents a set of states, including the position, velocity, and the receiver 
clock bias drift rate. ��� s

s  represents the covariance matrix related to a set of DD 
carrier-phase measurements ��� s

s  and can be expressed as shown in Equation (45):
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Therefore, the position and velocity set expressed in the ECEF frame can 
be estimated by solving Equation (44) denoted by { | , , }pr

WE
t

k K� � �0 1  and 
{ | , , }vr

WE
t

k K� � �0 1  with r t tt k k� �[ , ],1  respectively. Based on the estimated tra-
jectory and velocity sets from VI initialization and optimization of Equation (43), 
the extrinsic parameter TWLWG  between the ENU and the world local frame can be 
estimated by solving the aligning objective function shown in Equation (46):
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where TWLWG*  represents the optimal extrinsic parameter to be estimated. Meanwhile, 
similar time interpolation logic is employed to obtain vr b

WL
t ,

 from { | , , }.vb
WL
k

k K� � �0 1  
The extrinsic parameter estimation takes advantage of both the Doppler and DD 
pseudorange measurements. Meanwhile, the elimination operation facilitates 
the utilization of the high-accuracy carrier-phase measurement without resolving 
the integer ambiguity. In a previous (Bai et al., 2022), we demonstrated that the 
multi-epochs carrier-phase constraint corresponding to Equation (43) can generate 
a significantly smoother trajectory compared with a single-epoch DD carrier-phase 
constraint. Therefore, the GNSS-VI initialization is completed with the extrinsic 
parameter ( )TWLWG  estimated as shown in Equation (46).
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5  EXPERIMENTAL VALIDATION

5.1  Experiment Setup

5.1.1  Experimental scenarios

To verify the effectiveness of the proposed method, two experiments were con-
ducted in urban canyons in Hong Kong (Figure 5). The top-left and bottom-left fig-
ures present the urban canyon scenarios evaluated in this study. Both urban scenarios 
contain static buildings, trees, and dynamic objects, such as double-decker buses, all 
of which have the potential to generate GNSS NLOS receptions. To determine how 
the proposed method works in scenarios with various degrees of urbanization, the 
first experiment was performed in a typical urban canyon scenario in Hong Kong 
(urban canyon 1 in Figure 5[a]). The second experiment was conducted in a more 
urbanized scenario (urban canyon 2 in Fig. 5b) with denser and taller building struc-
tures; this type of scenario is more challenging for GNSS-RTK positioning. Of note, 
we do not know the ground truth of the fixed solution even when the GNSS-RTK 
passed the ratio test with a threshold of 3.0. During the evaluation of this paper, we 
labeled a fixed solution based on two criteria: (1) the ratio test should be passed with 
a threshold of 3.0 and (2) the 3D positioning error should not exceed 20 centimeters. 

5.1.2  Sensor setups

The details of the data collection vehicle can be found in our recently open-sourced 
UrbanNav data set (Hsu et al., 2021)1. This data set includes multi-sensor data collected 
in typical urban canyons in Hong Kong and Tokyo. In both experiments, a low-cost 
automobile-level u-blox M8T GNSS receiver was used to collect raw single-frequency 
GPS/BeiDou measurements at a frequency of 10 Hz. The Xsens Ti-10 IMU was 
employed to collect data at the frequency of 400 Hz. A forward-looking monocular 
camera was used to capture the visual features with a FOV of 90° (horizontal) x 60° 
(vertical) at a frequency of 10 Hz together with a sky-pointing fish-eye camera that 
captured the sky-view image with a FOV of 185° at a frequency of 10 Hz. Note that the 
fish-eye camera can help to capture the wide sky view image which benefits the detec-
tion of GNSS NLOS satellites. However, the significant geometrical distortion caused 

1https://github.com/weisongwen/UrbanNavDataset

FIGURE 5 Demonstration of the experimental vehicle and the evaluated urban canyons 1 and 2

https://github.com/weisongwen/UrbanNavDataset
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by the fish-eye lens will damage the image quality which can limit feature detection. 
Therefore, a forward-looking monocular camera is used to detect the features. The 
sensor setup is shown in Figure 5(c). The NovAtel SPAN-CPT (Kennedy et al., 2006), 
GNSS (GPS, GLONASS, and BeiDou), and RTK/INS (fiber-optic gyroscopes, FOG) 
integrated navigation system were employed to provide ground truth of positioning. 
The gyro bias in-run stability of the FOG is one degree per hour and its random walk 
is 0.067 degrees per hour. According to the specification of the NovAtel SPAN-CPT, a 
centimeter-level accuracy can be obtained when the RTK correction is available with 
the correct fixed solution. Moreover, the ground truth output from SPAN-CPT was 
post-processed using the Inertial Explorer software from NovAtel to guarantee the 
accuracy of the trajectory by processing forward and reverse in time and backward 
smoothing followed by combining the results. All data were post-processed with a 
desktop (Intel Core i7-9700K CPU, 3.60 GHz) computer.

5.1.3  Evaluation methods 

We verified the effectiveness of the proposed method step-by-step by comparing 
the following five methods:

(a)	 RTK: GNSS-RTK positioning results using the conventional method 
(Herrera et al., 2015). This was to show how the conventional GNSS real-time 
kinematic positioning performs in the evaluated urban canyon data sets.

(b)	 RTK-NE: GNSS RTK positioning aided by the GNSS NLOS exclusion (NE) based 
on the outlier removal presented in Section 2A. This was performed in addition to 
RTK. This was performed to verify the contribution of the GNSS NLOS removal.

(c)	 RTK-NE-VINS: This loosely integrates the results from RTK-NE with the 
pose estimation from VINS (Qin et al., 2018) in a conventional manner via 
factor graph optimization as shown previously (Qin et al., 2019). This was 
performed to show how the loosely-coupled integration of VINS and GNSS-
RTK operates even after the GNSS NLOS receptions are removed. 

(d)	 RTK-IG: Used when the geometric constraints are improved by tightly 
coupling the visual measurements with the GNSS measurements as shown 
in Section 4. This was performed to demonstrate the improvement resulting 
from the tightly-coupled visual measurements with GNSS-RTK, which is the 
main contribution of this work. We note that the GNSS NLOS receptions are 
not detected using this method. “IG” denotes improved geometry.

(e)	 RTK-NE-IG: Used once the GNSS NLOS receptions are removed and 
after the geometric constraints are improved by tightly coupling the 
visual measurements with the healthy GNSS measurements as shown in 
Section 4. This was performed to demonstrate the outcomes resulting from 
both the NLOS exclusion and geometric improvements.

5.2  Experimental Evaluation in Urban Canyon 1

5.2.1  Evaluation of positioning performance

The positioning performance observed using each of the five aforementioned 
methods is shown in Table 1. The error cumulative distribution function (ECDF) 
and trajectories are shown in Figure 6 and Figure 7, respectively. A mean error 
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TABLE 1
Positioning Performance of the Five Methods in Urban Canyon 1

All Data RTK RTK-NE RTK-NE-VINS RTK-IG RTK-NE-IG

2D MEAN 1.83 1.78 1.59 1.36 0.84

2D STD 2.01 1.25 1.06 0.84 0.39

2D Max 30.33 9.06 6.53 4.7 1.94

2D Impr. 2.7% 13.11% 25.46% 54.09%

3D MEAN 4.26 5.12 4.21 2.44 2.27

3D STD 6.27 3.76 2.15 0.81 0.85

3D Max 37.62 25.56 9.85 4.8 3.68

3D Impr. –20% 1.17% 42.72% 46.70%

Fixed Rate 0% 0% 0% 0.49% 1.67%

Avail. 99.1% 72% 100% 100% 100%

Time Consu. (ms) 5.2 5.2 50.7 67.9 65.4

Note: Improvement (Impr.) was calculated based on the RTK method. 2D/3D, horizontal/3D 
positioning; STD, standard deviation; Avail., availability. Time Consu., the average time 
consumption of the method.

FIGURE 6 The cumulative distribution function for 2D positioning errors of the five 
methods evaluated in urban canyon 1 
The red, green, cyan, magenta, and blue denote RTK, RTK-NE, RTK-NE-VINS, RTK-IG, and RTK-
NE-IG, respectively.

FIGURE 7 2D positioning trajectories of the five methods evaluated in urban canyon 1 
The red, green, cyan, magenta, and blue curves denote the RTK, RTK-NE, RTK-NE-VINS, RTK-
IG, and RTK-NE-IG, respectively. The black curve denotes the ground truth trajectory.
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of 1.83 meters was obtained using the conventional GNSS-RTK positioning method 
(Herrera et al., 2016) with a standard deviation of 2.01 meters. Moreover, the maxi-
mum error reached 30 meters as shown in the annotated area of Figure 7 by a dashed 
rectangle. This is very far from the positioning requirements of autonomous systems 
and was attributed to the GNSS NLOS receptions from tall surrounding building 
structures. After excluding the detected GNSS NLOS receptions using the RTK-NE 
method, the error decreased to 1.78 meters, representing only a 2.7% improvement 
compared with the conventional RTK method. This results from the distortion of the 
satellite geometry due to the NLOS exclusion. In other words, the GNSS NLOS exclu-
sion can increase the dilution of precision (DOP) (Enge, 1994) and thus increase the 
uncertainty of GNSS positioning. The average DOP value for the satellite distribution 
is about 3.1 and 3.5 before and after the GNSS NLOS exclusion, respectively. A more 
detailed analysis of the geometry of the GNSS-RTK will be presented in the following 
Section. Moreover, the availability decreases from 99.1% to 72% for RTK-NE because 
excessive GNSS NLOS may result in an insufficient number of satellite measure-
ments for GNSS positioning. We observed a similar phenomenon in our previous 
work (Wen et al., 2019c; Wen et al., 2019b). However, the standard deviation (STD) 
and the maximum errors decrease significantly after excluding the outlier GNSS 
NLOS receptions, which documents the effectiveness of the GNSS NLOS exclusion 
in mitigating the adverse impact of gross outlier measurements. 

We then integrated the improved GNSS-RTK positioning result from the RTK-NE 
method with the pose estimation from the VINS as originally described by Qin et al. 
(2019) to determine how the VINS can help the GNSS-RTK in a loosely-coupled 
manner. The mean error decreases to 1.59 meters with the assistance of the VINS 
and results in an improvement of 13.11%. Meanwhile, both the STD and the max-
imum error decrease slightly and the availability increases to 100% because the 
state estimation from VINS is continuously available. The improved results demon-
strate that the integration of the VINS contributes to resisting the outlier GNSS 
measurements. However, the improvement is still limited because the loosely 
coupled integration cannot fully exploit the complementarity between GNSS and 
visual measurements. Furthermore, no fixed solution can be estimated from RTK, 
RTK-NE, or RTK-NE-VINS methods with a fixed rate of 0% (He et al., 2014). The 
fixed rate is defined as a ratio of the number of ambiguity-fixed epochs over the 
number of total epochs and documents the availability of epochs for positioning.

Interestingly, further improvements were obtained by tightly integrating the 
visual measurements with the GNSS DD pseudorange, carrier-phase, and Doppler 
measurements based on the RTK-IG method presented in Section 4. The mean error 
decreased to 1.36 meters with an improvement of 25.46% and the STD decreased 
significantly to 0.84 meters. These results demonstrate that tightly-coupled integra-
tion can result in better performance compared with loosely-coupled integration. 
Improvements from tightly- coupled integration result in two main benefits: (1) 
the tightly coupled visual measurements can improve the geometric constraints 
as discussed in Section 4, and (2) both the visual and GNSS measurements can be 
modeled more precisely. With the visual constraint improving the geometry, a fixed 
rate of 0.49% can be obtained using the RTK-IG method. This achievement docu-
ments the effectiveness of the proposed method in improving the geometry of con-
ventional GNSS-RTK. However, the maximum error still reaches 4.7 meters due to 
unexpected GNSS NLOS receptions. To determine how the GNSS NLOS exclusion 
might help to improve the RTK-IG method, we removed the GNSS NLOS recep-
tions during the tightly-coupled integration leading to the RTK-NE-IG method. In 
this case, the mean error decreased to 0.84 meters with an improvement of 54.09%. 
This method also led to a significantly decreased STD of 0.39 meters and a maxi-
mum error that decreased to only 1.94 meters. These results demonstrate that the 
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GNSS NLOS exclusion can significantly improve the performance of GNSS-IG. 
Moreover, an increased fixed rate of 1.67% was obtained, which further documents 
the effectiveness of NLOS exclusion compared with RTK-IG. Of note, the fixed rate 
remains low even when using the proposed method. This is because the proposed 
method also resolves the integer ambiguity of the carrier-phase epoch-by-epoch, 
i.e., so-called instantaneous ambiguity resolution. We plan to examine how the 
visual measurements can help improve the geometric constraints of the satellite 
measurements and evaluate the performance improvement epoch-by-epoch. In the 
future, we plan to add the fixed-and-hold mode to the integer ambiguity resolution 
together with cycle slip detection. This has the potential to lead to a significantly 
higher fixed rate.

Although navigation requirements mainly focus on 2D (horizontal) positioning, 
we also present the results of 3D positioning performance in the bottom section of 
Table 1. These findings may reveal whether the proposed method can also improve 
vertical positioning compared with conventional RTK positioning. While the 3D 
mean error of the conventional RTK method reaches more than 4 meters, the 3D 
mean error increases to 5.12 meters using the RTK-NE. This is mainly because of 
the GNSS NLOS exclusion, which can lead to larger vertical dilutions of precision 
(VDOPs) (Enge, 1994) and thus larger vertical positioning errors. The 3D mean 
error decreases slightly with the assistance of the loosely coupled integration of 
VINS, which led to an improvement of 1.17%. A significantly decreased 3D mean 
error was observed after applying the RTK-IG method which led to an improve-
ment of 42.72%. Further improved 3D positioning was obtained by the GNSS NLOS 
exclusion with an improvement of 46.70% using RTK-NE-IG.

In summary, the gradual decreases in positioning error demonstrate the contri-
butions of both the GNSS NLOS exclusion and the geometric improvement; these 
findings were also demonstrated by ECDF as shown in Figure 6. Availability of 
100% was obtained using the proposed method (RTK-NE-VINS). While the remain-
ing positioning error still reaches 0.84 meters, mainly because the GNSS multipath 
effect (Enge, 1994), another major error source, was not considered in this paper. 
Because the multipath phenomenon involves both direct and reflected signals, it 
cannot be detected directly via sky view visibility.

5.2.2  Evaluation of rotation performance

Conventionally, the GNSS receiver provides only positioning estimates. The 
attitude of the system cannot be estimated directly by the GNSS measurements. 
However, visual and inertial measurements can be used to determine the attitude 
of the system. Therefore, it will be interesting to determine whether the proposed 
method can be used for attitude estimation. Because the RTK and RTK-NE meth-
ods do not provide attitude estimation, we limited the comparison to results from 
RTK-NE-VINS, RTK-IG, and RTK-NE-IG methods as shown in Table 2.

TABLE 2
Absolute Rotational Accuracy of the Three Methods Evaluated in Urban Canyon 1

All Data (degree) RTK-NE-VINS RTK-IG RTK-NE-IG

MEAN 5.18 3.01 2.73

STD 3.57 1.71 1.56

Max 6.18 3.84 3.75

Min 1.13 1.08 0.91
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The absolute rotation accuracy was evaluated using the popular EVO tool kit 
(Grupp, 2017). A mean error of 5.18 degrees was obtained using the RTK-NE-VINS 
with a standard deviation of 3.57 degrees. With the assistance of the tightly cou-
pled integration of visual measurements, the mean error of attitude decreases to 
3.01 degrees with a decreased standard deviation of 1.71 degrees. Interestingly, the 
mean attitude error decreased slightly to 2.73 degrees using GNSS NLOS exclusion 
by RTK-NE-IG. In summary, a slightly improved attitude estimation was obtained 
using the proposed method (RTK-NE-IG) compared with conventional loosely cou-
pled integration strategies (RTK-NE-VINS).

5.2.3  Analysis of the geometric constraints

To confirm that the geometric improvements were caused mainly caused by the 
visual measurements, we present ADOP measurements (T. Liu et al., 2021; Teunissen, 
1997) which are effective indicators of the geometric distribution. The findings 
shown in Figure 8 present the geometry using four of the aforementioned methods, 
including the RTK, RTK-NE, RTK-IG, and RTK-NE-IG. Of note, the geometry of the 
RTK-NE-VINS is the same as that of RTK-NE. The ADOP values are presented in the 
top panel of Figure 8. The green curve (RTK-NE) has the largest ADOP value com-
pared to conventional RTK because of the GNSS NLOS exclusion. Based on visual 
measurements, the ADOP decreases dramatically to about 0.1. Interestingly, the 
ADOP resulting from RTK-NE-IG increases only slightly compared to RTK-IG even 
with the GNSS NLOS exclusion. This demonstrates that the visual measurements can 
effectively guarantee the appropriate geometry even when the GNSS NLOS exclusion 
has been performed. Moreover, the ADOP value resulting from the RTK-NE-IG is 
smaller than the RTK even with the GNSS NLOS exclusion.

To determine the number of constraints involved, the number of visual mea-
surements and GNSS measurements are presented (bottom panel of Figure 8). The 
total of GPS/BeiDou satellites remains below 20 throughout the entire experiment. 

FIGURE 8 Illustration of the geometric analysis of the four methods evaluated in urban 
canyon 1 
The red, green, magenta, and blue curves denote the RTK, RTK-NE, RTK-IG, and RTK-NE-IG, 
respectively. The top panel denotes the ADOP during the experiment with the x-axis denoting 
time and the y-axis denoting the value of ADOP. The bottom panel denotes the number of 
constraints including the visual and GNSS measurements.
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Fortunately, the number of visual measurements exceeds 40 at most of the epochs. 
Of note, visual measurements are counted if they are tracked at the latest epoch. 
The statistical number of constraints contributed by visual and GNSS are listed in 
Table 3. Overall, signals from a mean number of 12 satellites were received during 
the experiment. After the GNSS NLOS exclusion, the mean number decreased 
to 10. The mean number of visual constraints was approximately 53 during the 
experiment in urban canyon 1, leading to a total of more than 60 by combining 
both the visual and GNSS measurements. However, because the optical flow-based 
visual feature tracking algorithm is sensitive to noise and illumination conditions, 
the tracked features may vary in different implementations. That is why the num-
ber of visual constraints looks different in the NLOS exclusion case, as shown in 
Figure 8. However, the change in the GNSS satellite before and after the NLOS 
exclusion can be still observed by comparing the methods RTK and RTK-NE 

To conduct an explicit comparison of the covariance matrix of the float ambiguity 
( )Qnn  that dominates the success rate of integer ambiguity resolution, each compo-
nent of the matrix was visualized at an experimentally-selected epoch corresponding to 
the four methods listed in Table 3 and as shown in Figure 9. The top left figure presents 
the Qnn  of the RTK method, with some of the diagonal elements reaching 0.5 with a 
total of 16 satellites. The deeper color denotes a larger value of the component in the 
matrix. After GNSS NLOS exclusion in the RTK-NE method (top right), the number 
of satellites decreases to 12 (the NLOS signals are from satellites 2, 3, 10, and 12). As a 
result, some of the diagonal components include deeper colors, which indicates larger 

TABLE 3
Comparison of Geometric Constraints Using Four Methods

Number of 
Constraints

RTK RTK-NE RTK-IG RTK-NE-IG

Visual 0 0 53.92 55.16

GNSS 12.64 10.59 12.64 10.59

Total 12.64 10.59 66.56 65.75

FIGURE 9 Illustration of the covariance matrix ( )Qnn  of float ambiguities at a selected 
epoch for the four methods Shown are (a) RTK, (b) RTK-NE, (c) RTK-IG, and (d) RTK-NE-IG.
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uncertainty in the corresponding DD ambiguity and thus leads to a lower success rate 
of integer ambiguity resolution. After the visual measurements are applied, the values 
of the diagonal components of both RTK-IG and RTK-NE-IG are reduced to below 0.2.

In summary, visual measurements can have a significant impact on improvements 
in geometry. However, the fixed rate of the proposed method (RTK-NE-IG) remains 
limited at 1.67%. Apart from the potential contributions of multipath effects as dis-
cussed previously, another dominant factor may be the poor quality of the GNSS 
measurements received by the low-cost commercial GNSS receiver (u-blox M8T) 
used in this study. The accuracy of this device is far below that of geodetic-level 
GNSS receivers. Moreover, the visual measurements may also locally constrain 
the multiple epochs that do not directly provide a globally referenced constraint. 
However, these findings reveal that at least several healthy and high-quality GNSS 
measurements are received that increase the fixed rate of GNSS-RTK positioning.

5.2.4  Analysis of system initialization

The initialization of the extrinsic parameters between the ENU and local world 
frames is significant for the performance of the state estimation due to the high 
nonlinearity of the system; this is especially the case for the initialization of the 
yaw angle offset between both frames. To verify the effectiveness of the proposed 
initialization method in which Doppler and high-accuracy DD carrier-phase mea-
surements are applied, we compare the following two methods: 

(1)	 Weighted least squares (conventional): Initialize TWLWG  only by aligning 
two sets of estimated trajectories and the one from VI-initialization described 
in Section 5A.

(2)	 Doppler/Carrier Smoothing (proposed): Initialize the TWLWG  only by 
solving Equation (29) which is free of ambiguity resolution.

Results from this comparison are shown in Table 4.
As shown in Table 4, an error of 15.70 degrees of the yaw offset was obtained 

using the conventional WLS-based method. Using the proposed method, the error 
of the yaw offset decreased to 5.93 degrees. Several factors contributed to this 
improved result compared with the conventional WLS-based method. First, the 
proposed method makes use of multiple epoch DD carrier-phase measurements 
to estimate a set of positions. This can significantly increase the smoothness com-
pared with the traditional utilization of the DD carrier phase. Furthermore, the 
unknown integer ambiguity terms are eliminated via the left null space matrix. 
The velocity estimated from the Doppler measurement also contributes to the ini-
tialization of the yaw offset. The translation part ( )pWLWG  of TWLWG  was also slightly 

TABLE 4
Comparison of Errors/Time in the Initialization of the Extrinsic Parameters

Items Weighted Least Squares-based Doppler/Carrier Smoothing

Yaw (degree) 15.70 5.93

East (meter) 1.05 0.92

North (meter) 0.86 0.80

Up (meter) 0.73 0.70

Ave. Time 
(milliseconds)

3097 4129

Note: Data for the ENU and local world frames were obtained using different methods.
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improved with the assistance of the proposed method. Meanwhile, the time uti-
lized for the whole initialization process increased slightly.

To initialize the entire system, one must provide a satisfactory initial guess of 
the TWLWG  to the estimator. However, if the measurements begin in a highly dense 
urbanized area where both the carrier phase and Doppler measurements are noisy, 
it will be difficult to obtain a good initial guess of TWLWG  even using the proposed 
method. One possible solution is to apply an electronic compass to provide the yaw 
offset between the ENU and local world frames and refine TWLWG  when the receiver 
is transported into less congested areas.

5.3  Experimental Evaluation in Urban Canyon 2

To challenge its effectiveness, the proposed method was verified using a data set 
collected in a denser urban canyon scenario as shown in Figure 5(b). The position-
ing performance using this data set is shown in Table 5. The ECDF and trajectory 
are shown in Figure 10 and Figure 11, respectively. A mean error of 2.68 meters 
was obtained using the conventional GNSS-RTK positioning method (Herrera 
et al., 2015) with an STD of 2.23 meters. In this scenario, the mean error was dou-
bled because of the taller building structures in urban canyon 2 compared with the 
results in urban canyon 1. The 3D error reached 9.94 meters with a maximum error 
of 34.89 meters. Even after excluding the potential GNSS NLOS receptions, the 
improvement in the mean error (11.56%) remained limited. Similar improvements 
were also obtained in 3D positioning. Moreover, the maximum errors decreased in 
both 2D and 3D positioning because of the exclusion of gross GNSS outlier mea-
surements. However, similar to what was observed for urban canyon 1, the avail-
ability in urban canyon 2 decreased from 99.05% to 71.5% due to excessive GNSS 
NLOS exclusion. 

The positioning accuracy was further improved after loosely integrating the 
GNSS positioning from the RTK-NE with the VINS as originally described by Qin 
et al. (2019). This resulted in improvements of 13.81% for 2D and 29.53% for 3D 
positioning, respectively. Moreover, the availability increased to 100% with the 
assistance of pose estimation from VINS. Interestingly, the 2D maximum error 
increased from 8.73 meters (RTK-NE) to 12.24 meters. A closer look at these data 

TABLE 5
Positioning Performance of the Five Methods Evaluated in Urban Canyon 2 

All Data RTK RTK-NE RTK-NE-VINS RTK-IG RTK-NE-IG

2D MEAN 2.68 2.37 2.31 1.77 1.37

2D STD 2.23 1.69 1.86 1.15 0.72

2D Max 11.38 8.73 12.24 5.50 5.83

2D Impr. 11.56% 13.81% 33.95% 48.90%

3D MEAN 6.94 5.70 4.89 2.74 2.64

3D STD 7.32 3.99 2.83 0.96 1.24

3D Max 34.89 30.68 14.56 5.88 6.89

3D Impr. 11.57% 29.53% 60.51% 61.95%

Fixed Rate 0% 0% 0% 0.72% 5.19%

Avail. 99.05% 71.5% 100% 100% 100%

Time Consu. (ms) 4.9 4.9 49.2 66.2 65.1

Note: Improvement is calculated with respect to the RTK method; (2D/3D, horizontal/3D 
positioning; Time Consu., the average time consumption of the method.
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is presented in Figure 11(a) and the case of a vehicle that has stopped and remains 
in one position at an intersection. The pose estimation from the VINS drifts grad-
ually because of the random walk of the IMU and the impact of the surrounding 
dynamic objects on the VINS. As a result, the RTK-NE-VINS drifted significantly 
at the road intersection. Fortunately, this problem is solved with tightly coupled 
integration of visual measurements using RTK-IG. In this case, the maximum 
error decreased to 5.50 for 2D positioning. More importantly, the 2D mean error 
decreased to 1.77 meters with an improvement of 33.95%. However, an improve-
ment of 60.51% was obtained for 3D positioning. Furthermore, a fixed rate of 0.72% 
was obtained even in this heavily urbanized scenario and the availability was also 
guaranteed. The 2D mean error decreased to 1.37 meters with an improvement of 
48.90% after applying the proposed RTK-NE-IG method. Collectively, these find-
ings highlight the effectiveness of the proposed method. Meanwhile, the STD also 
decreased to 0.72 meters. Similar improvements (61.95%) were also obtained in the 
3D positioning. Moreover, the fixed rate of GNSS-RTK increased to 5.19%, which 

FIGURE 10 The error cumulative distribution function (ECDF) for 2D positioning errors of 
the five methods evaluated in urban canyon 2 
The red, green, cyan, magenta, and blue denote RTK, RTK-NE, RTK-NE-VINS, RTK-IG, and RTK-
NE-IG, respectively.

FIGURE 11 2D positioning trajectories of the five methods evaluated in urban canyon 2 
The red, green, cyan, magenta, and blue curves denote the RTK, RTK-NE, RTK-NE-VINS, RTK-
IG, and RTK-NE-IG, respectively. The black curve denotes the ground truth trajectory.
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further demonstrates the effectiveness of the proposed method in both excluding 
the GNSS NLOS receptions and improving the geometric constraint.

In summary, the use of the proposed method led to improvements in position-
ing with a 2D mean error of 1.37 in this heavily-urbanized scenario (as per the sky 
view image in Figure 11[b]). As discussed in the experimental validation in urban 
canyon 1, the unconsidered multipath effects are likely to be the major factor limiting 
the absolute positioning accuracy even when potential GNSS NLOS are excluded. 

6  CONCLUSIONS 

The integration of VINS and GNSS-RTK is a promising potential solution that 
may provide accurate, cost-effective, and drift-free positioning services for auton-
omous systems with specific navigation requirements. Unfortunately, the perfor-
mance of the GNSS-RTK/VINS is significantly challenged in urban canyons due 
to the poor quality of GNSS measurements and satellite geometric distributions 
caused by signal blockage and reflections from surrounding buildings. In this paper, 
a 3D vision-aided method was proposed as a means to improve the GNSS-RTK 
positioning by detecting the potential reflected outlier GNSS signals and improv-
ing the geometric distribution of the satellites via low-lying visual landmarks. The 
effectiveness of the proposed method was verified through several challenging data 
sets collected in urban canyons of Hong Kong using low-cost automobile-level 
GNSS receivers together with an automobile visual/inertial sensor suite.

There are several directions for future work on this subject. Because visual 
measurements can be tracked repetitively, one solution might be to employ 
already-explored visual landmarks in order to constrain the system once their posi-
tions have been correctly estimated, for example, by fixed GNSS-RTK positioning in 
a previous epoch. In this way, the visual landmark can be applied as an additional 
auxiliary GNSS satellite that might be used to improve GNSS-RTK positioning in 
urban canyons. This will be the focus of some of our future work. The multipath 
effect is another major factor limiting the overall performance of the proposed 
method (for example, the 2D mean error of 0.84 identified in urban canyon 1).  
The modeling of multipath effects will also be considered in future investigations.

 We note that vegetation (e.g., trees) may not directly block GNSS signal trans-
mission but may lead to signal diffraction (Marais et al., 2020). We are also inter-
ested in determining how the GNSS transmits signals in areas of significant 
vegetation. Moreover, as the visual measurements introduce significant mea-
surement redundancy, will also be important to determine how to estimate bias 
in the multipath-affected GNSS signals through the sparse estimation technique 
(Lesouple et al. 2018).

a c k n o w l e d g m e n t s 
This research is supported by the University Grants Committee of Hong Kong 

under the scheme Research Impact Fund on project R5009-21 “Reliable Multiagent 
Collaborative Global Navigation Satellite System Positioning for Intelligent 
Transportation Systems.” The authors appreciate the kind comments and sug-
gestions from Dr. Jinxu Liu from the National Laboratory of Pattern Recognition, 
Institute of Automation, Chinese Academy of Sciences and Dr. Di Wang from Lab 
of Visual Cognitive Computing and Intelligent Vehicle, Xi’an Jiaotong University, 
Xi’an, China. The authors also would like to thank members of the Intelligent 
Positioning and Navigation Laboratory at The Hong Kong Polytechnic University 
for their help and suggestions on algorithm development, data collection, and 
synchronization.



WEN et al.    

r e f e r e n c e s
Bai, X., Wen, W., & Hsu, L.-T. (2020a). Robust visual-inertial integrated navigation system aided by 

online sensor model adaption for autonomous ground vehicles in urban areas. Remote Sensing, 
12(10), 1686. https://doi.org/10.3390/rs12101686 

Bai, X., Wen, W., & Hsu, L. T. (2020b). Using sky-pointing fish-eye camera and Lidar to aid GNSS 
single-point positioning in urban canyons. IET Intelligent Transport Systems, 14(8), 908–914. 
http://dx.doi.org/10.1049/iet-its.2019.0587

Bai, X., Wen, W., & Hsu, L.-T. (2022). Time-correlated window-carrier-phase-aided GNSS 
positioning using factor graph optimization for urban positioning. IEEE Transactions on 
Aerospace and Electronic Systems, 58(4), 3370–3384. https://doi.org/10.1109/TAES.2022.3149730

Bai, X., Zhang, B., Wen, W., Hsu, L.-T., & Li, H. (2020c). Perception-aided visual-inertial 
integrated positioning in dynamic urban areas. Proc. of the IEEE/ION Position, Location and 
Navigation Symposium (PLANS 2020). Portland, OR. 1563–1571. https://doi.org/10.1109/
PLANS46316.2020.9109963

Bloesch, M., Omari, S., Hutter, M., & Siegwart, R. (2015). Robust visual inertial odometry using 
a direct EKF-based approach. Proc. of the IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS 2015), Hamburg, Germany. 298–304. https://doi.org/10.1109/
IROS.2015.7353389

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J. J. 
(2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-
perception age. IEEE Transactions on Robotics, 32(6), 1309–1332. https://doi.org/10.1109/
TRO.2016.2624754

Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., & Tardós, J. D. (2021). Orb-SLAM3: An 
accurate open-source library for visual, virual-inertial, and multimap SLAM. IEEE Transactions 
on Robotics, 37(6), 1874–1890. https://doi.org/10.1109/TRO.2021.3075644

Cao, S., Lu, X., & Shen, S. (2022). GVINS: Tightly coupled GNSS-visual-inertial fusion for smooth 
and consistent state estimation. IEEE Transactions on Robotics, 38(4), 2004–2021. https://doi.
org/10.1109/TRO.2021.3133730

Ch’ng, S.-F., Khosravian, A., Doan, A.-D., & Chin, T.-J. (2019). Outlier-robust manifold pre-
integration for INS/GPS fusion. Proc. of the IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS 2019), Macau, China. 7489–7496. https://doi.org/10.1109/
IROS40897.2019.8967643

Cho, A., Kim, J., Lee, S., & Kee, C. (2011). Wind estimation and airspeed calibration using a 
UAV with a single-antenna GPS receiver and pitot tube. IEEE Transactions on Aerospace and 
Electronic Systems, 47(1), 109–117. https://doi.org/10.1109/TAES.2011.5705663

Counselman, C. C., & Gourevitch, S. A. (1981). Miniature interferometer terminals for earth 
surveying: ambiguity and multipath with global positioning system. IEEE Transactions on 
Geoscience and Remote Sensing GE-19(4), 244–252. https://doi.org/10.1109/TGRS.1981.350379

Enge, P. K. (1994). The global positioning system: Signals, measurements, and performance. 
International Journal of Wireless Information Networks, 1(2), 83–105. https://doi.org/10.1007/
BF02106512

Fan, P., Li, W., Cui, X., & Lu, M. (2019). Precise and robust RTK-GNSS positioning in urban 
environments with dual-antenna configuration. Sensors, 19(16), 3586. https://doi.org/10.3390/
s19163586

Forster, C., Carlone, L., Dellaert, F., & Scaramuzza, D. (2016). On-manifold preintegration for 
real-time visual-inertial odometry. IEEE Transactions on Robotics, 33(1), 1–21. https://doi.
org/10.1109/TRO.2016.2597321

Furukawa, R., Kubo, N., & El-Mowafy, A. (2020). Prediction of RTK-GNSS performance in 
urban environments using a 3D model and continuous LoS method. Proc. of the International 
Technical Meeting of the Institute of Navigation, (ION GNSS+ 2020), San Diego, CA. 763–771. 
https://doi.org/10.33012/2020.17176

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI 
dataset. The International Journal of Robotics Research, 32(11), 1231–1237. https://doi.
org/10.1177/0278364913491297

Geneva, P., Eckenhoff, K., Lee, W., Yang, Y., & Huang, G. (2020). Openvins: A research platform for 
visual-inertial estimation. Proc. of the IEEE International Conference on Robotics and Automation 
(ICRA 2020), Paris, France.4666–4672. https://doi.org/10.1109/ICRA40945.2020.9196524

Gong, Z., Liu, P., Wen, F., Ying, R., Ji, X., Miao, R., & Xue, W. (2020). Graph-based adaptive fusion 
of GNSS and VIO under intermittent GNSS-degraded environment. IEEE Transactions on 
Instrumentation and Measurement, 70, 1–16. https://doi.org/10.1109/TIM.2020.3039640

Grupp, M. (2017). evo: Python package for the evaluation of odometry and slam. https://github. 
com/MichaelGrupp/evo

He, H., Li, J., Yang, Y., Xu, J., Guo, H., & Wang, A. (2014). Performance assessment of single-and 
dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solutions, 18, 393–403. 
https://doi.org/10.1007/s10291-013-0339-3

https://doi.org/10.3390/rs12101686
http://dx.doi.org/10.1049/iet-its.2019.0587
https://doi.org/10.1109/TAES.2022.3149730
https://doi.org/10.1109/PLANS46316.2020.9109963
https://doi.org/10.1109/PLANS46316.2020.9109963
https://doi.org/10.1109/IROS.2015.7353389
https://doi.org/10.1109/IROS.2015.7353389
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/TRO.2021.3133730
https://doi.org/10.1109/TRO.2021.3133730
https://doi.org/10.1109/IROS40897.2019.8967643
https://doi.org/10.1109/IROS40897.2019.8967643
https://doi.org/10.1109/TAES.2011.5705663
https://doi.org/10.1109/TGRS.1981.350379
https://doi.org/10.1007/BF02106512
https://doi.org/10.1007/BF02106512
https://doi.org/10.3390/s19163586
https://doi.org/10.3390/s19163586
https://doi.org/10.1109/TRO.2016.2597321
https://doi.org/10.1109/TRO.2016.2597321
https://doi.org/10.33012/2020.17176
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1109/ICRA40945.2020.9196524
https://doi.org/10.1109/TIM.2020.3039640
https://github.%20com/MichaelGrupp/evo
https://github.%20com/MichaelGrupp/evo
https://doi.org/10.1007/s10291-013-0339-3


    WEN et al.

Herrera, A. M., Suhandri, H. F., Realini, E., Reguzzoni, M., & de Lacy, M. C. (2015). goGPS: open-
source MATLAB software. GPS Solutions, 20(3), 595–603. https://doi.org/10.1007/s10291-015-
0469-x

Herrera, A. M., Suhandri, H. F., Realini, E., Reguzzoni, M., & de Lacy, M. C. (2016). goGPS: open-
source MATLAB software. GPS Solutions, 20, 595–603.

Hsu, L.-T., Kubo, N., Wen, W., Chen, W., Liu, Z., Suzuki, T., & Meguro, J. (2021). UrbanNav: An 
open-sourced multisensory dataset for benchmarking positioning algorithms designed for urban 
areas. Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute 
of Navigation (ION GNSS+ 2021), St. Louis, MO.226–256. https://doi.org/10.33012/2021.17895

Hsu, L.-T., Tokura, H., Kubo, N., Gu, Y., & Kamijo, S. (2017). Multiple faulty GNSS measurement 
exclusion based on consistency check in urban canyons. IEEE Sensors Journal, 17(6), 1909–1917. 
https://doi.org/10.1109/JSEN.2017.2654359

Kennedy, S., Hamilton, J., & Martell, H. (2006). Architecture and system performance 
of SPAN-NovAtel’s GPS/INS solution. Proc. of the IEEE/ION Position, Location, And  
Navigation Symposium (PLANS 2006), Coronado, CA. 216. https://doi.org/10.1109/
PLANS.2006.1650612

Lesouple, J., Robert, T., Sahmoudi, M., Tourneret, J.-Y., & Vigneau, W. (2018). Multipath 
mitigation for GNSS positioning in an urban environment using sparse estimation. IEEE 
Transactions on Intelligent Transportation Systems, 20(4), 1316–1328. https://doi.org/10.1109/
TITS.2018.2848461

Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., & Furgale, P. (2015). Keyframe-based visual-
inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 
34(3), 314–334. https://doi.org/10.1177/0278364914554813

Li, K., Li, M., & Hanebeck, U. D. (2021). Towards high-performance solid-state-Lidar-inertial 
odometry and mapping. IEEE Robotics and Automation Letters, 6(3), 5167–5174. https://doi.
org/10.1109/LRA.2021.3070251

Li, M., & Mourikis, A. I. (2013). High-precision, consistent EKF-based visual-inertial 
odometry. The International Journal of Robotics Research, 32(6), 690–711. https://doi.
org/10.1177/0278364913481251

Li, T., Zhang, H., Gao, Z., Niu, X., & El-Sheimy, N. (2019). Tight fusion of a monocular camera, 
MEMS-IMU, and single-frequency multi-GNSS RTK for precise navigation in GNSS-challenged 
environments. Remote Sensing, 11(6), 610. https://doi.org/10.3390/rs11060610

Li, T., Zhang, H., Niu, X., & Gao, Z. (2017). Tightly-coupled integration of multi-GNSS single-
frequency RTK and MEMS-IMU for enhanced positioning performance. Sensors, 17(11), 2462. 
https://doi.org/10.3390/s17112462

Li, X., Wang, X., Liao, J., Li, X., Li, S., & Lyu, H. (2021). Semi-tightly coupled integration of multi-
GNSS PPP and S-VINS for precise positioning in GNSS-challenged environments. Satellite 
Navigation, 2(1), 1–14. https://doi.org/10.1186/s43020-020-00033-9

Liu, J., Gao, W., & Hu, Z. (2021). Optimization-based visual-inertial SLAM tightly coupled with raw 
GNSS measurements. Proc. of the IEEE International Conference on Robotics and Automation 
(ICRA 2021), Xi’an, China. 11612–11618. https://doi.org/10.1109/ICRA48506.2021.9562013

Liu, T., hai Liao, Q., Gan, L., Ma, F., Cheng, J., Xie, X., Wang, Z., Chen Y., Zhu, Y., Zhang, S., Chen, 
Z., Liu, Y., Xie, M., Y, Y., Guo, Z., Li, G., Yuan, P., Han, D., Chen, Y., ... & Liu, M. (2021). The 
role of the Hercules autonomous vehicle during the COVID-19 pandemic: An autonomous 
logistic vehicle for contactless goods transportation. IEEE Robotics & Automation Magazine, 
28(1), 48–58. https://doi.org/10.1109/MRA.2020.3045040

Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to 
stereo vision. Proc. of the 7th International Joint Conference on Artificial Intelligence (IJCAI’81), 
Vancouver, Canada. 674–679. https://hal.science/hal-03697340/document

Marais, J., Ambellouis, S., Meurie, C., Moreau, J., Flancquart, A., & Ruichek, Y. (2015). Image 
processing for a more accurate GNSS-based positioning in urban environment. Proc. of the 22nd 
ITS World Congress (2015). Bordeaux, France. http://dx.doi.org/10.13140/RG.2.2.10493.97760

Marais, J., Kazim, S. A., Cocheril, Y., & Meurie, C. (2020). Multipath and NLOS detection 
based on the combination of CN0 values and a fish-eye camera. Proc. of the European 
Navigation Conference (ENC 2020), Dresden, Germany. 1–13. https://doi.org/10.23919/
ENC48637.2020.9317408

Marais, J., Meurie, C., Attia, D., Ruichek, Y., & Flancquart, A. (2014). Toward accurate localization 
in guided transport: Combining GNSS data and imaging information. Transportation Research 
Part C: Emerging Technologies, 43, 188–197. https://doi.org/10.1016/j.trc.2013.11.008

Ng, H.-F., & Hsu, L.-T. (2021). 3D mapping database-aided GNSS RTK and its assessments in 
urban canyons. IEEE Transactions on Aerospace and Electronic Systems, 57(5), 3150–3166. 
https://doi.org/10.1109/TAES.2021.3069271

Niu, Z., Guo, F., Shuai, Q., Li, G., & Zhu, B. (2021). The integration of GPS/BDS real-time kinematic 
positioning and visual-inertial odometry based on smartphones. ISPRS International Journal of 
Geo-Information, 10(10), 699. https://doi.org/10.3390/ijgi10100699

https://doi.org/10.1007/s10291-015-0469-x
https://doi.org/10.1007/s10291-015-0469-x
https://doi.org/10.33012/2021.17895
https://doi.org/10.1109/JSEN.2017.2654359
https://doi.org/10.1109/PLANS.2006.1650612
https://doi.org/10.1109/PLANS.2006.1650612
https://doi.org/10.1109/TITS.2018.2848461
https://doi.org/10.1109/TITS.2018.2848461
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1109/LRA.2021.3070251
https://doi.org/10.1109/LRA.2021.3070251
https://doi.org/10.1177/0278364913481251
https://doi.org/10.1177/0278364913481251
https://doi.org/10.3390/rs11060610
https://doi.org/10.3390/s17112462
https://doi.org/10.1186/s43020-020-00033-9
https://doi.org/10.1109/ICRA48506.2021.9562013
https://doi.org/10.1109/MRA.2020.3045040
https://hal.science/hal-03697340/document
http://dx.doi.org/10.13140/RG.2.2.10493.97760
https://doi.org/10.23919/ENC48637.2020.9317408
https://doi.org/10.23919/ENC48637.2020.9317408
https://doi.org/10.1016/j.trc.2013.11.008
https://doi.org/10.1109/TAES.2021.3069271
https://doi.org/10.3390/ijgi10100699


WEN et al.    

Qin, C., Ye, H., Pranata, C. E., Han, J., Zhang, S., & Liu, M. (2020). Lins: A Lidar-inertial state 
estimator for robust and efficient navigation. In Proc. of the IEEE International Conference on 
Robotics and Automation (ICRA 2020). https://doi.org/10.48550/arXiv.1907.02233

Qin, T., Cao, S., Pan, J., & Shen, S. (2019). A general optimization-based framework for global 
pose estimation with multiple sensors. Pre-print; arXiv:1901.03642 https://doi.org/10.48550/
arXiv.1901.03642

Qin, T., Li, P., & Shen, S. (2018). Vins-mono: A robust and versatile monocular visual-inertial 
state estimator. IEEE Transactions on Robotics, 34(4), 1004–1020. https://doi.org/10.1109/
TRO.2018.2853729

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical 
image segmentation. Proc. (Part III) of the 18th International Conference Medical Image 
Computing and Computer-Assisted Intervention(MICCAI 2015), Munich, Germany. 18 https://
doi.org/10.48550/arXiv.1505.04597

Rycroft, M. J. (1997). Understanding GPS. Principles and applications. Journal of Atmospheric and 
Solar-Terrestrial Physics, 5(59), 598–599. https://doi.org/10.1016/s1364-6826(97)83337-8

Shan, T., & Englot, B. (2018). Lego-loam: Lightweight and ground-optimized LiDAR odometry 
and mapping on variable terrain. In 2018 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), Madrid, Spain (pp. 4758–4765). https://doi.org/10.1109/
IROS.2018.8594299

Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., & Rus, D. (2020). Lio-sam: Tightly-coupled 
LiDAR inertial odometry via smoothing and mapping. Proc.of the IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS 2020), Las Vegas, NV. https://doi.
org/10.48550/arXiv.2007.00258

Shi, J. (1994). Good features to track. Proc. of the IEEE Conference on Computer Vision and Pattern 
Recognition (1994), Seattle, WA. 593–600. https://doi.org/10.1109/CVPR.1994.323794

Sibley, G., Matthies, L., & Sukhatme, G. (2010). Sliding window filter with application to planetary 
landing. Journal of Field Robotics, 27(5), 587–608. https://doi.org/10.1002/rob.20360

Suzuki, T., & Kubo, N. (2013). Correcting GNSS multipath errors using a 3D surface model and 
particle filter. Proc. of the 26th International Technical Meeting of the Satellite Division of the 
Institute of Navigation (ION GNSS+ 2013), Nashville, TN. 1583–1595.

Takasu, T., & Yasuda, A. (2009). Development of the low-cost RTK-GPS receiver with an open-
source program package RTKLIB. Proc. of the International Symposium on GPS/GNSS (2009), 
Seogwipo-si, Korea. 

Teunissen, P. (1997). A canonical theory for short GPS baselines. Part IV: Precision versus 
reliability. Journal of Geodesy, 71(9), 513–525. https://doi.org/10.1007/s001900050119

Teunissen, P. (2000). The GPS integer least-squares statistics. Physics and Chemistry of the 
Earth, Part A: Solid Earth and Geodesy, 25(9–11), 673–677. https://doi.org/10.1016/S1464-
1895(00)00104-6

Teunissen, P. (2001). Integer estimation in the presence of biases. Journal of Geodesy, 75, 399–407. 
https://doi.org/10.1007/s001900100191

Teunissen, P. (2003). Theory of integer equivariant estimation with application to GNSS. Journal 
of Geodesy, 77(7–8), 402–410. https://doi.org/10.1007/s00190-003-0344-3

Wang, H., Wang, C., & Xie, L. (2021). Intensity-slam: Intensity assisted localization and mapping 
for large scale environment. IEEE Robotics and Automation Letters, 6(2), 1715–1721. https://
doi.org/10.1109/LRA.2021.3059567

Wang, K., Teunissen, P. J., & El-Mowafy, A. (2020). The ADOP and PDOP: two complementary 
diagnostics for GNSS positioning. Journal of Surveying Engineering, 146(2), 04020008. https://
doi.org/10.1061/(ASCE)SU.1943-5428.0000313

Wen, W. (2020). 3D LiDAR aided GNSS and its tightly coupled integration with INS via factor 
graph optimization. In Proc. of the 33rd International Technical Meeting of the Satellite Division 
of the Institute of Navigation (ION GNSS+ 2020), St. Louis, MO. 1649–1672 https://doi.
org/10.33012/2020.17557

Wen, W., Bai, X., Kan, Y.C., & Hsu, L.-T. (2019c). Tightly-coupled GNSS/INS integration via 
factor graph and aided by fish-eye camera. IEEE Transactions on Vehicular Technology, 68(11), 
10651–10662. https://doi.org/10.1109/TVT.2019.2944680

Wen, W., & Hsu, L.-T. (2021). Towards robust GNSS positioning and real-time kinematic using 
factor graph optimization. Proc. of the IEEE International Conference on Robotics and Automation 
(ICRA 2021), Xi’an, China. 5884–5890. https://doi.org/10.1109/ICRA48506.2021.9562037

Wen, W., Zhang, G., & Hsu, L.-T. (201). Exclusion of GNSS NLOS receptions caused by dynamic 
objects in heavy traffic urban scenarios using real-time 3D point cloud: An approach without 
3D maps. Proc. of the IEEE/ION Position, Location and Navigation Symposium (PLANS 2018), 
Monterey, CA, 158–165. https://doi.org/10.1109/PLANS.2018.8373377

Wen, W., Zhang, G., & Hsu, L.-T. (2019a). GNSS NLOS exclusion based on dynamic object 
detection using LiDAR point cloud. IEEE Transactions on Intelligent Transportation Systems, 
22(2), 853–862. https://doi.org/10.1109/TITS.2019.2961128

Wen, W., Zhang, G., & Hsu, L. T. (2019b). Correcting NLOS by 3D Lidar and building height to 
improve GNSS single point positioning. NAVIGATION, 66(4), 705–718 https://doi.org/10.1002/
navi.335

https://doi.org/10.48550/arXiv.1907.02233
https://doi.org/10.48550/arXiv.1901.03642
https://doi.org/10.48550/arXiv.1901.03642
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.1016/s1364-6826%2897%2983337-8
https://doi.org/10.1109/IROS.2018.8594299
https://doi.org/10.1109/IROS.2018.8594299
https://doi.org/10.48550/arXiv.2007.00258
https://doi.org/10.48550/arXiv.2007.00258
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1002/rob.20360
https://doi.org/10.1007/s001900050119
https://doi.org/10.1016/S1464-1895%2800%2900104-6
https://doi.org/10.1016/S1464-1895%2800%2900104-6
https://doi.org/10.1007/s001900100191
https://doi.org/10.1007/s00190-003-0344-3
https://doi.org/10.1109/LRA.2021.3059567
https://doi.org/10.1109/LRA.2021.3059567
https://doi.org/10.1061/%28ASCE%29SU.1943-5428.0000313
https://doi.org/10.1061/%28ASCE%29SU.1943-5428.0000313
https://doi.org/10.33012/2020.17557
https://doi.org/10.33012/2020.17557
https://doi.org/10.1109/TVT.2019.2944680
https://doi.org/10.1109/ICRA48506.2021.9562037
https://doi.org/10.1109/PLANS.2018.8373377
https://doi.org/10.1109/TITS.2019.2961128
https://doi.org/10.1002/navi.335
https://doi.org/10.1002/navi.335


    WEN et al.

Wen, W., Zhou, Y., Zhang, G., Fahandezh-Saadi, S., Bai, X., Zhan, W., Tomizuka, M., and Hsu, L. T. 
(2020). Urbanloco: A full sensor suite dataset for mapping and localization in urban scenes. 
Proc. of the IEEE International Conference on Robotics and Automation (ICRA 2020), Paris, 
France. 2310–2316. http://dx.doi.org/10.1109/ICRA40945.2020.9196526

Ye, H., Chen, Y., & Liu, M. (2019). Tightly coupled 3D LiDAR inertial odometry and mapping. 
Proc. of the International Conference on Robotics and Automation (ICRA 2019), Montreal, QC, 
Canada. pp. 3144–3150. https://doi.org/10.1109/ICRA.2019.8793511

Zampieri, G., Narayanan, S., Crespillo, O. G., & Osechas, O. (2020). A regularized least squares 
estimator for pseudorange-based terrestrial positioning under degraded geometries. Proc. of the 
33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION 
GNSS+ 2020), St. Louis, MO. 698–707 https://doi.org/10.33012/2020.17690

Zhang, J., Liu, W., & Wu, Y. (2011). Novel technique for vision-based UAV navigation. IEEE 
Transactions on Aerospace and Electronic Systems, 47(4), 2731–2741. https://doi.org/10.1109/
TAES.2011.6034661

Zhang, J., & Singh, S. (2017). Low-drift and real-time Lidar odometry and mapping. Autonomous 
Robots, 41(2), 401–416. https://link.springer.com/article/10.1007/s10514-016-9548-2

How to cite this article: Wen, W., Bai, X., & Hsu, L. (2023). 3D Vision 
aided GNSS real-time kinematic positioning for autonomous systems in 
urban canyons. NAVIGATION, 70(3). https://doi.org/10.33012/navi.590

7  APPENDIX 

7.2  Jacobians of Residuals

We adopted the same Jacobian matrix derivation for the IMU pre-integration 
and the visual reprojection residual as described in Qin et al. (2018). Therefore, we 
mainly derive the Jacobians related to the DD pseudorange and carrier-phase resid-
uals together with the Doppler measurement residuals as described in this section.

7.2.3  Jacobian of DD pseudorange residual 

The DD pseudorange residual correlates with the position of the system at two key-
frames (pb

WL
k

 and pb
WL
k+1

) as well as with the extrinsic parameter of TWLWG .  The Jacobian 
of pb

WL
k

 with respect to the DD pseudorange residuals can be derived as follows from 
Equation (A-1):
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where the er
w
t

 denotes the LOS vector connecting the GNSS receiver and the mas-
ter satellite w. Similarly, the Jacobian of pb

WL
k+1

 concerning the DD pseudorange 
residual can be derived from Equation (A-2) as follows:
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Because the RWL

WG  involves only the yaw angle which is denoted as the Euler 
angle εWLWGz ,  the Jacobian of RWL

WG  with respect to the DD pseudorange residual can 
be derived from Equation (A-3):
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The Jacobian of pWLWG  concerning the DD pseudorange residual can be derived 
from Equation (A-4) as follows:
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7.2.4  Jacobian of DD carrier-phase residual 

The DD carrier-phase residual correlates with the position of the system at two 
keyframes ( pb

WL
k

 and pb
WL
k+1

) as well as the extrinsic parameter of TWLWG  and the inte-
ger ambiguity NDD r

s
t, . The Jacobian of pb

WL
k

 for the DD carrier-phase residual can 
be derived from Equation (A-5) as follows:
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where the er
w
t

 denotes the LOS vector connecting the GNSS receiver and the mas-
ter satellite w . Similarly, the Jacobian of pb

WL
k+1

 concerning the DD carrier-phase 
residual can be derived from Equation (A-6) as follows:
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Similar to the DD pseudorange residuals, the Jacobian of RWL
WG  for the DD 

carrier-phase residual can be derived from Equation (A-7) as follows:
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The Jacobian of pWLWG  for the DD carrier-phase residual can be derived from 
Equation (A-8) as follows:
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Different from the DD pseudorange residual, The integer ambiguity differs from 
the DD pseudorange residual as it includes an additional term to be estimated. The 
Jacobian is derived from Equation (A-9) as follows:
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7.2.5  Jacobian of the Doppler measurement residual 

The Doppler measurement residual correlates with the position and velocity of 
the system in two keyframes ( ,p vb

WL
b
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k k
 and p vb
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b
WL

k k+ +1 1
, )  as well as with the extrin-

sic parameter of RWL
WG. The Jacobian of pb
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k

 for the Doppler measurement residual 
can be derived from Equation (A-10) as follows:

	
�

�

�
�

� �
�

rd rt
s

rt b
WL

bk
WL

t

t k

k k t

d

d r
s r t

t t r
WE s

WG
( ),

,
( )
( )

,, (
v

p
v R�

1

WWE
WL
WG

r
WL

WG
WE

WL
WGT

t
R v R R) K� � � (A-10)
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where the K is a matrix related to the er
s
t

. Er
s
t
i( )  is employed to obtain the i-th 

element of the vector Er
s
t
. Similarly, the Jacobian of pb

WL
k+1

 for the Doppler measure-
ment residual can be derived from Equation (A-11) as follows:
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The Jacobian of vb
WL
k

 for the Doppler measurement residual can be derived from 
Equation (A-12) as follows:
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Similarly, the Jacobian of vb
WL
k+1

 for the Doppler measurement residual can be 
derived from Equation (A-13) as follows:
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The Jacobians of pWLWG  and RWL
WG  for the Doppler measurement residual are the 

same as shown in Equations (A-8) and (A-7), respectively.
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